Valutazione Tecnica Europea

ETA-12/0084 del 28 luglio 2017

Traduzione in inglese preparata da DIBt - Versione originale in lingua tedesca

Aspetti generali

Organismo di Valutazione Tecnica rilasciante la Valutazione Tecnica Europea:

Denominazione commerciale del prodotto da costruzione

Famiglia di prodotti a cui appartiene il prodotto da costruzione

Fabbricante

Stabilimento di produzione

La presente Valutazione Tecnica Europea contiene

La presente Valutazione Tecnica Europea è rilasciata in conformità con il regolamento (UE) no. 305/2011, sulla base di

Questa versione sostituisce

Deutsches Institut für Bautechnik

Sistema a iniezione Hilti HIT-HY 200-R

Ancorante chimico da usare nel calcestruzzo

Hilti Aktiengesellschaft 9494 SCHAAN PRINCIPATO DEL LIECHTENSTEIN

Stabilimenti Hilti

39 pagine inclusi 3 allegati

Linea guida per il Benestare Tecnico Europeo di "Ancoranti metallici da utilizzare nel calcestruzzo",ETAG 001 Parte 5: "Ancoranti chimici", aprile 2013, utilizzata come Documento di Valutazione Europea (EAD) ai sensi dell'Articolo 66 paragrafo 3 del Regolamento (UE) n° 305/2011.

ETA-12/0084 emessa il 3 febbraio 2017

Valutazione Tecnica Europea ETA-12/0084

Pagina 2 di 39 | 28 July 2017

Traduzione in inglese preparata da DIBt

La Valutazione Tecnica Europea è emessa dall'Organismo di Valutazione Tecnica nella sua lingua ufficiale. La traduzione in altre lingue della presente Valutazione Tecnica Europea deve corrispondere appieno al documento originale e deve essere identificata in quanto tale.

La distribuzione di questa Valutazione Tecnica Europea, inclusa la trasmissione elettronica, deve avvenire in versione integrale. Tuttavia, si potrà effettuare una riproduzione parziale soltanto con il consenso scritto dell'Organismo di Valutazione Tecnica. L'eventuale riproduzione parziale deve essere identificata come tale.

Questa Valutazione Tecnica Europea può essere annullata dall'Ente Omologatore Tecnico, in particolare in seguito a informazioni da parte della Commissione in accordo con quanto previsto dall'Articolo 25 (3) del Regolamento (UE) n° 305/2011.

Traduzione in inglese preparata da DIBt

Parte specifica

1 Descrizione tecnica del prodotto

Il sistema a iniezione Hilti HIT-HY 200-R è un ancorante chimico costituito da una cartuccia con resina a iniezione Hilti HIT-HY 200-R e un elemento in acciaio come da Allegato A.

L'elemento in acciaio è posizionato in un foro praticato riempito di resina a iniezione ed è ancorato dal legame tra parte metallica, resina a iniezione e calcestruzzo.

La descrizione del prodotto è riportata nell'Allegato A.

2 Specifica della destinazione d'uso in conformità al Documento di Valutazione Europea applicabile

Le prestazioni riportate al capitolo 3 sono valide soltanto se l'ancorante viene utilizzato in conformità con le specifiche e le condizioni indicate nell'Allegato B.

Le verifiche e i metodi di valutazione sui quali si basa la presente Valutazione Tecnica Europea lasciano supporre una durata operativa minima dell'ancorante pari a 50 anni. Le indicazioni fornite in merito alla durata operativa non possono essere interpretate come una garanzia fornita dal produttore, ma devono essere considerate soltanto un mezzo per scegliere i prodotti giusti in relazione alla durata operativa presunta economicamente ragionevole delle opere realizzate.

3 Performance del prodotto e riferimenti ai metodi usati per la sua valutazione

3.1 Stabilità e resistenza meccanica (BWR 1)

Caratteristica essenziale	Prestazione
Resistenza caratteristica sotto sollecitazione statica e semi-statica	Vedere Allegato da C1 a C12
Resistenza caratteristica per sollecitazione sismica categoria C1 e C2, spostamenti	Vedere Allegato da C13 a C17

3.2 Sicurezza in caso di incendio (BWR 2)

Caratteristica essenziale	Prestazione		
Reazione al fuoco	Gli ancoraggi soddisfano i requisiti della Classe A1		
Resistenza al fuoco	Nessuna prestazione determinata (NPD)		

3.3 Igiene, salute e ambiente (BWR 3)

Relativamente a sostanze pericolose possono esserci requisiti (ad es. dispositivi legislativi, regolamentari e amministrativi nazionali e legislazione europea trasposta) applicabili ai prodotti rientranti nell'ambito della presente Valutazione Tecnica Europea. Al fine di soddisfare le disposizioni del Regolamento (UE) n° 305/2011, si devono soddisfare anche questi requisiti, qualora e nella misura in cui essi dovessero essere applicabili.

3.4 Sicurezza durante l'uso (BWR 4)

Le caratteristiche essenziali relative alla sicurezza durante l'uso sono incluse nell'ambito del requisito di base per lavori di costruzione stabilità e resistenza meccanica.

Valutazione Tecnica Europea ETA-12/0084

Pagina 4 di 39 | 28 July 2017

Traduzione in inglese preparata da DIBt

4 Sistema di valutazione e verifica della costanza delle prestazioni (AVCP), con riferimento alla sua base legale

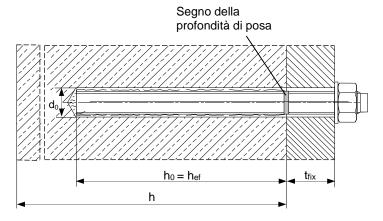
In accordo con la linea guida per il Valutazione Tecnica Europea ETAG 001, aprile 2013 utilizzata come Documento di Valutazione Europea (EAD) ai sensi dell'Articolo 66 paragrafo 3 del Regolamento (UE) n° 305/2011 la legge europea applicabile è: [96/582/CE]. Il sistema da applicare è: 1

Particolari tecnici necessari per l'implementazione del sistema AVCP, come previsto nel Documento di Valutazione Europea applicabile

Particolari tecnici necessari per l'implementazione del sistema AVCP, come previsto dal piano di controllo depositato presso il Deutsches Institut für Bautechnik.

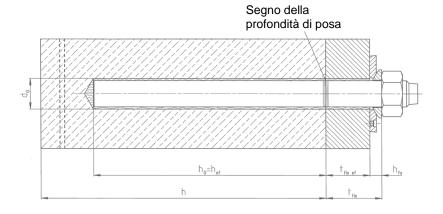
Emesso a Berlino il 28 luglio 2017 dal Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Responsabile del reparto

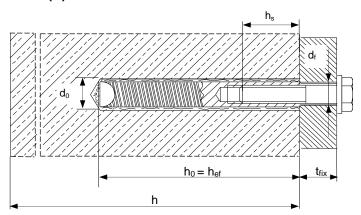

autenticato:

Lange

Condizioni installate


Figura A1:

Barra filettata e HIT-V-..., AM 8.8

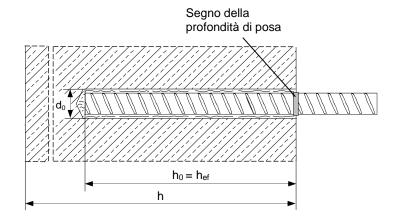

Figura A2:

Barra filettata e HIT-V-..., AM 8.8, con set di riempimento Hilti

Figura A3:

Bussola a filetto interno HIS-(R)N

Sistema a iniezione Hilti HIT-HY 200-R


Descrizione del prodotto

Condizioni installate

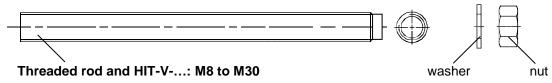
Allegato A1

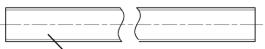
Condizioni installate

<u>Figura A4:</u> Ferro di armatura

Sistema a iniezione Hilti HIT-HY 200-R	
Descrizione del prodotto Condizioni installate	Allegato A2

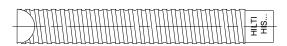
Descrizione del prodotto: Resina a iniezione ed elementi di acciaio


Resina a iniezione Hilti HIT-HY 200-R: sistema ibrido con aggregato 330 ml e 500 ml



Miscelatore statico Hilti HIT-RE-M

Elementi di acciaio



Barra metrica Hilti AM 8.8 elettrozincata, AM HDG 8.8 galvanizzata per immersione a caldo Da M8 a M30, da 1m a 3m

Barra filettata standard commerciale:

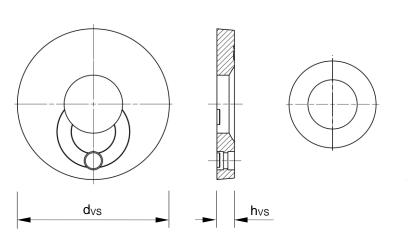
- Materiali e caratteristiche meccaniche ai sensi della Tabella A1.
- Certificato di ispezione 3.1 ai sensi della EN 10204:2004. Il documento dovrà essere conservato.
- Segno della profondità di posa.

Bussola a filetto interno: HIS-(R)N da M8 a M20

HZA da M12 a M27 e HZA-R da M12 a M24 Ancorante a trazione Hilti:

Sistema a iniezione Hilti HIT-HY 200-R	
Descrizione del prodotto Resina a iniezione / miscelatore statico / elementi di acciaio	Allegato A3

Descrizione del prodotto: Resina a iniezione ed elementi di acciaio


Ferro di armatura (ferro di ripresa): ϕ da 8 a ϕ 32

- · Materiali e caratteristiche meccaniche ai sensi della Tabella A1
- · Dimensioni come da Allegato B6

Set di riempimento Hilti per riempire il giunto anulare tra ancorante e fissaggio

Rondella sferica

Rondella di tenuta

Set di riempimento			M16	M20	M24
Diametro della rondella di tenuta	dvs	[mm]	56	60	70
Spessore della rondella di tenuta	hvs	[mm]		6	

Sistema a iniezione Hilti HIT-HY 200-R	
Descrizione del prodotto Resina a iniezione / miscelatore statico / elementi di acciaio	Allegato A4

Tabella .	A1:	Mate	rial	i
-----------	-----	------	------	---

Denominazione	Materiale
Ferri di armatura	
Ferro di ripresa: EN 1992-1-1: 2004 e AC:2010, Allegato C	Ferri e barre raddrizzate Classe B o C con f_{yk} e k secondo NDP o NCL di EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot \cdot f_{yk}$
Parti metalliche reali	izzate in acciaio zincato
Barra filettata, HIT-V-5.8(F)	Classe di resistenza 5.8, f_{ik} = 500 N/mm², f_{yk} = 400 N/mm², Allungamento a rottura (I_0 =5d) > duttilità 8% elettrozincata \geq 5 μ m; (F) galvanizzata per immersione a caldo \geq 45 μ m
Barra filettata, HIT-V-8.8(F)	Classe di resistenza 8.8, f_{ik} = 800 N/mm², f_{yk} = 640 N/mm², Allungamento a rottura (l_0 =5d) > duttilità 12% elettrozincata \geq 5 μ m; (F) galvanizzata per immersione a caldo \geq 45 μ m
Barra metrica Hilti, AM 8.8 (HDG)	Classe di resistenza 8.8, f_{ik} = 800 N/mm², f_{yk} = 640 N/mm², Allungamento a rottura (I_0 =5d) > duttilità 12%, Elettrozincata \geq 5 μ m, (F) galvanizzata per immersione a caldo \geq 45 μ m
Ancorante a trazione Hilti HZA	Acciaio rotondo con parte filettata: elettrozincato ≥ 5 μm Ferro di ripresa: Ferri classe B ai sensi NDP o NCL di EN 1992-1-1/NA:2013
Bussola a filetto interno HIS-N	Elettrozincata ≥ 5 μm
Rondella	Elettrozincata ≥ 5 μm, galvanizzata per immersione a caldo ≥ 45 μm
Dado	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata Elettrozincato \geq 5 μ m, galvanizzato per immersione a caldo \geq 45 μ m
Set di riempimento Hilti (F)	Rondella di riempimento: Elettrozincata $\geq 5~\mu m$, (F) galvanizzata per immersione a caldo $\geq 45~\mu m$ Rondella sferica: Elettrozincata $\geq 5~\mu m$, (F) galvanizzata per immersione a caldo $\geq 45~\mu m$ Dado di bloccaggio: Elettrozincata $\geq 5~\mu m$, (F) galvanizzata per immersione a caldo $\geq 45~\mu m$
Parti metalliche reali	izzate in acciaio inox
Barra filettata, HIT-V-R	Per ≤ M24: classe di resistenza 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm²; Per > M24: classe di resistenza 50, f_{uk} = 500 N/mm², f_{yk} = 210 N/mm²; Allungamento a rottura (f_{0} =5d) > duttilità 8% Acciaio inox 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Ancorante a trazione Hilti HZA-R	Acciaio tondo con parte filettata: Acciaio inox 1.4404, 1.4362, 1.4571 EN 10088-1:2014 Ferro di ripresa: Ferri classe B ai sensi NDP o NCL di EN 1992-1-1/NA:2013
Bussola a filetto interno HIS-RN	Acciaio inox 1.4401, 1.4571 EN 10088-1:2014
Rondella	Acciaio inox 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014
Dado	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata Acciaio inox 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014

Sistema a iniezione Hilti HIT-HY 200-R	
Descrizione del prodotto Materiali	Allegato A5

Parti metalliche realizzate in acciaio ad alta resistenza alla corrosione			
Barra filettata HIT-V-HCR	Per \leq M20: f_{uk} = 800 N/mm², f_{yk} = 640 N/mm², Per $>$ M20: f_{uk} = 700 N/mm², f_{yk} = 400 N/mm², Allungamento a rottura (l_0 =5d) $>$ duttilità 8% Acciaio altamente resistente alla corrosione 1.4529, 1.4565 EN 10088-1:2014		
Rondella	Acciaio altamente resistente alla corrosione 1.4529, 1.4565 EN 10088-1:2014		
Dado	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata Acciaio altamente resistente alla corrosione 1.4529, 1.4565 EN 10088-1:2014		

Sistema a iniezione Hilti HIT-HY 200-R	
Descrizione del prodotto Materiali	Allegato A6

Specifiche tecniche per la destinazione d'uso

Ancoraggi soggetti a:

- Carico statico e semi-statico
- Sollecitazione sismica categoria C1 e C2 (vedere Tabella B1).

Materiale base:-

- Calcestruzzo normale rinforzato o non rinforzato ai sensi della EN 206-1:2000.
- Classi di resistenza da C20/25 a C50/60 ai sensi della EN 206-1:2000.
- Calcestruzzo fessurato e non fessurato.

Temperatura nel materiale base:

· all'installazione

da -10 °C a +40 °C

· di esercizio

Intervallo di temperatura I: da -40 °C a +40°C

(temperatura max. a lungo termine +24°C e temperatura max. a breve termine +40 °C)

Intervallo di temperatura II: da -40 °C a +80°C

(temperatura max. a lungo termine +50°C e temperatura max. a breve termine +80 °C)

Intervallo di temperatura III: da -40 °C a +120°C

(temperatura max. a lungo termine +72°C e temperatura max. a breve termine +120 °C)

Tabella B1: Specifiche tecniche per la destinazione d'uso

	HIT-HY 200-R con			
Elementi	HIT-V AM 8.8	Ferro di ripresa	HZA(-R)	HIS-(R)N
Trapano a percussione con punta cava per perforatori TE-CD o TE-YD	✓	~	~	✓
Trapano a percussione	✓	✓	✓	✓
Carico statico e semi-statico in calcestruzzo fessurato e non-fessurato	da M8 a M30	φ da 8 a φ 32	da M12 a M27	da M8 a M20
Sollecitazione sismica categoria C1	da M10 a M30	φ da 10 a φ 32	da M12 a M27	-
Sollecitazione sismica categoria C2	da M16 a M24 HIT-V 8.8, AM 8.8 HIT-V-F 8.8, AM HDG 8.8	-	-	-
	Barra standard commerciale (soltanto elettrozincata)			

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Specifiche	Allegato B1

Condizioni d'uso (condizioni ambientali):

- Strutture soggette a condizioni interne secche (acciaio zincato, acciaio inox o acciaio ad alta resistenza a corrosione).
- Strutture soggette all'esposizione all'atmosfera esterna (compresi ambienti industriali e marini) e a condizioni interne di umidità permanente, se non esistono condizioni particolarmente aggressive (acciaio inox o acciaio ad alta resistenza a corrosione).
- Strutture soggette all'esposizione all'atmosfera esterna e a condizioni interne di umidità permanente, se esistono altre condizioni particolarmente aggressive (acciaio ad alta resistenza a corrosione).

Nota: Per condizioni particolarmente aggressive si intendono, ad es., immersione permanente o saltuaria in acqua di mare o esposizione a spruzzi di acqua di mare, atmosfera di cloro di piscine coperte o atmosfera con inquinamento chimico estremo

(ad es. impianti di desolforazione o gallerie stradali in cui vengono usati prodotti antigelo).

Progettazione:

- Gli ancoraggi vengono progettati sotto la responsabilità di un tecnico esperto in ancoraggi e opere in calcestruzzo.
- Vengono predisposte delle note di calcolo verificabili e dei disegni che tengono conto dei carichi da ancorare. La posizione dell'ancorante è indicata dei disegni di progetto (ad es. posizione dell'ancorante rispetto al rinforzo o ai supporti, ecc.).
- Gli ancoraggi sotto carico statico o semi-statico sono progettati in conformità con:
 - "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"
- Gli ancoraggi sotto carico sismico (calcestruzzo fessurato) sono progettati in conformità con:
 - "Rapporto Tecnico EOTA TR 045, edizione febbraio 2013"

Gli ancoraggi devono essere posizionati al di fuori delle zone critiche (per es. cerniere di plastica) della struttura in calcestruzzo. I fissaggi per installazioni distanziate dalla parete o con uno strato di malta soggetti ad azione sismica non sono contemplati dalla presente Valutazione Tecnica Europea (ETA).

Installazione:

- Categoria d'uso: struttura a secco o a umido (non in fori pieni d'acqua)
- È consentita l'installazione a soffitto
- L'installazione degli ancoraggi viene eseguita da personale adeguatamente qualificato e sotto la supervisione della persona responsabile delle questioni tecniche del cantiere.

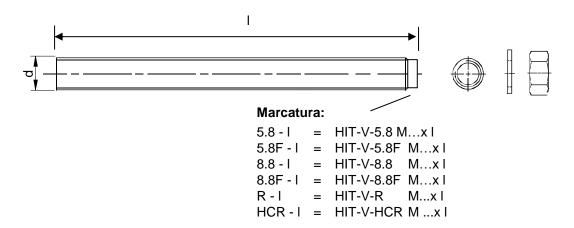

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Specifiche	Allegato B2

Tabella B2: Parametri di installazione di barra filettata e HIT-V-... e AM 8.8


Barra filettata e HIT-V AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Diametro elemento	d	[mm]	8	10	12	16	20	24	27	30
Diametro nominale punta da trapano	d ₀	[mm]	10	12	14	18	22	28	30	35
Profondità di posa effettiva e profondità del foro	ofondita di posa effettiva e		da 60 a 160	da 60 a 200	da 70 a 240	da 80 a 320	da 90 a 400	da 96 a 480	da 108 a 540	da 120 a 600
Diametro massimo del foro passante nel fissaggio 1)	df	[mm]	9	12	14	18	22	26	30	33
Spessore effettivo del fissaggio con set di riempimento sismico t _{fix,eff} =t _{fix} -h _{fs}	h _{fs}	[mm]	-	-	-	11	13	15	-	-
Spessore minimo dell'elemento in calcestruzzo	h _{min}	[mm]	h _{ef} + 30 ≥ 100 mm		- h 1 h 1 h 1 h 1 h 1 h			n _{ef} + 2⋅d	lo	
Coppia di serraggio massima	T _{max}	[Nm]	10	20	40	80	150	200	270	300
Interasse minimo	Smin	[mm]	40	50	60	75	90	115	120	140
Distanza minima dal bordo	Cmin	[mm]	40	45	45	50	55	60	75	80

¹⁾ per foro passante più largo vedere "TR 029 par. 1.1"

HIT-V-...

Barra metrica Hilti AM (HDG) 8.8

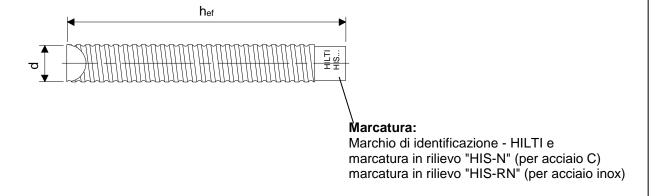

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Parametri di installazione di barra filettata e HIT-V e AM 8.8	Allegato B3

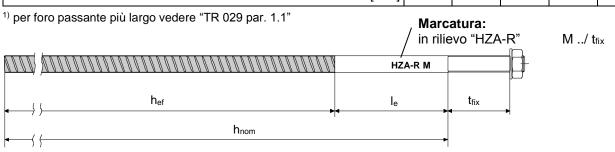
Tabella B3: Parametri di installazione di bussola a filetto interno HIS-(R)N

Bussola a filetto interno HIS-(R)N	M8	M10	M12	M16	M20		
Diametro esterno della bussola	d	[mm]	12,5	16,5	20,5	25,4	27,6
Diametro nominale punta da trapano	d_0	[mm]	14	18	22	28	32
Profondità di posa effettiva e profondità del foro	$h_{ef} = h_0$	[mm]	90	110	125	170	205
Diametro massimo del foro passante nel fissaggio 1)	df	[mm]	9	12	14	18	22
Spessore minimo dell'elemento in calcestruzzo	h _{min}	[mm]	120	150	170	230	270
Coppia di serraggio massima	T _{max}	[Nm]	10	20	40	80	150
Lunghezza inserimento filetto min- max	hs	[mm]	8-20	10-25	12-30	16-40	20-50
Interasse minimo	Smin	[mm]	60	75	90	115	130
Distanza minima dal bordo	Cmin	[mm]	40	45	55	65	90

¹⁾ per foro passante più largo vedere "TR 029 par. 1.1"

Bussola a filetto interno HIS-(R)N...

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Parametri di installazione di bussola a filetto interno HIS-(R)N	Allegato B4


Tabella B4: Parametri di installazione dell'ancorante a trazione Hilti HZA-R

Ancorante a trazione Hilti HZA-R			M12	M16	M20	M24	
Diametro ferro di ripresa	ф	[mm]	12	16	20	25	
Profondità di posa nominale e profondità del foro	h _{nom} = h ₀	[mm]	da 170 a 240	da 180 a 320	da 190 a 400	da 200 a 500	
Profondità di posa effettiva (h _{ef} = h _{nom} - l _e)	h _{ef}	[mm]	h _{nom} – 100				
Lunghezza dello stelo liscio	le	[mm]	100				
Diametro nominale punta da trapano	d ₀	[mm]	16	20	25	32	
Diametro massimo del foro passante nel fissaggio 1)	d _f	[mm]	14	18	22	26	
Coppia di serraggio massima	T _{max}	[Nm]	40	80	150	200	
Spessore minimo dell'elemento in calcestruzzo	h _{min}	[mm]	h _{nom} + 2·d ₀				
Interasse minimo	S _{min}	[mm]	65	80	100	130	
Distanza minima dal bordo	Cmin	[mm]	45	50	55	60	

¹⁾ per foro passante più largo vedere "TR 029 par. 1.1"

Tabella B5: Parametri di installazione dell'ancorante a trazione Hilti HZA

Ancorante a trazione Hilti HZA			M12	M16	M20	M24	M27
Diametro ferro di ripresa	ф	[mm]	12	16	20	25	28
Profondità di posa nominale e profondità del foro	h _{nom} = h ₀	[mm]	da 90 a 240	da 100 a 320	da 110 a 400	da 120 a 500	da 140 a 560
Profondità di posa effettiva (hef = hnom - le)	h _{ef}	[mm]	h _{nom} – 20				
Lunghezza dello stelo liscio	le	[mm]	20				
Diametro nominale punta da trapano	d ₀	[mm]	16	20	25	32	35
Diametro massimo del foro passante nel fissaggio 1)	d _f	[mm]	14	18	22	26	30
Coppia di serraggio massima	T _{max}	[Nm]	40	80	150	200	270
Spessore minimo dell'elemento in calcestruzzo	h _{min}	[mm]	h _{nom} + 2⋅d ₀				
Interasse minimo	Smin	[mm]	65	80	100	130	140
Distanza minima dal bordo	Cmin	[mm]	45	50	55	60	75

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Parametri di installazione dell'ancorante a trazione Hilti HZA-(R)	Allegato B5

Tabella B6: Parametri di installazione di ferro di armatura

Ferro di armatura (ferro di ripresa)			ф8	ф 10	ф	12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Diametro	ф	[mm]	8	10	1	2	14	16	20	25	26	28	30	32
Profondità di posa effettiva e profondità del foro	$h_{ef} = h_0$	[mm]	da 60 a 160	da 60 a 200	60 da 70 a a		da 75 a 280	da 80 a 320	da 90 a 400	da 100 a 500	da 104 a 520	da 112 a 560	da 120 a 600	da 128 a 640
Diametro nominale punta da trapano	d_0	[mm]	10 / 12 ¹⁾	12 / 14 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40
Spessore minimo dell'elemento in calcestruzzo	h _{min}	[mm]		h _{ef} + 30 ≥ 100 mm		h _{ef} + 2⋅d ₀								
Interasse minimo	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160
Distanza minima dal bordo	Cmin	[mm]	40	45	45 45		50	50	65	70	75	75	80	80

¹⁾ Si può usare ognuno dei due valori indicati.

Ferro di armatura

Per bullone ferro di ripresa

- $\bullet \quad \text{Valore minimo della superficie della gola relativa } f_{\text{R,min}} \text{ secondo la EN 1992-1-1:2004+AC:2010}.$
- L'altezza di gola della barra h_{rib} dovrà essere compresa nell'intervallo 0,05·φ ≤ h_{rib} ≤ 0,07·φ
 (φ: Diametro nominale della barra; h_{rib}: Altezza di gola della barra)

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Parametri di installazione del ferro di armatura (ferro di ripresa)	Allegato B6

Tabella B7: Tempo di lavorazione massimo e tempo di indurimento minimo

Temperatura del materiale base T	Tempo di lavorazione massimo twork	Tempo di indurimento minimo t _{cure}				
-10 °C a -5 °C	3 ore	20 ore				
> -5 °C a 0 °C	2 ore	8 ore				
>0°C a 5°C	1 ora	4 ore				
>5°C a 10°C	40 min.	2,5 ore				
> 10 °C a 20 °C	15 min.	1,5 ore				
> 20 °C a 30 °C	9 min.	1 ore				
> 30 °C a 40 °C	6 min.	1 ore				

Sistema a iniezione Hilti HIT-HY 200-R	
Destinazione d'uso Tempo di lavorazione massimo e tempo di indurimento minimo	Allegato B7

Tabella B8: Parametri di attrezzi di posa e pulizia

	Elen	nenti		Pe	Perforazione e pulizia				
Barra filettata, HIT-V AM 8.8	HIS-(R)N	Ferro di ripresa	HZA(-R)	Trapano a	Trapano a percussione punta cava per perforatori		Galleggiante		
manaman in		ארא	(1333333333333333333333333333333333333	CCCCC					
formato	formato	formato	formato	d ₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ		
M8	-	φ8	-	10	-	10	-		
M10	-	φ8 / φ10	-	12	12 ¹⁾	12	12		
M12	M8	φ10 / φ12	-	14	14 ¹⁾	14	14		
-	-	φ12	M12	16	16	16	16		
M16	M10	φ14	-	18	18	18	18		
-	-	φ16	M16	20	20	20	20		
M20	M12	-	-	22	22	22	22		
-	-	φ20	M20	25	25	25	25		
M24	M16	-	-	28	28	28	28		
M27	-	-	-	30	-	30	30		
-	M20	φ25 / φ26	M24	32	32	32	32		
M30	-	ф28	M27	35	35	35	35		
-	-	φ30	-	37	-	37	37		
-	-	φ32	1	40	-	40	40		

¹⁾ Da usare in combinazione con l'aspiratore Hilti con capacità di aspirazione ≥ 61 l/s (VC 20/40 –Y soltanto in modalità con cavo).

Alternative di pulizia

Pulizia manuale (MC):

Pompa manuale Hilti per pulire fori di diametro $d_0 \le 20$ mm e profondità di fori $h_0 \le 10 \cdot d$.

Pulizia ad aria compressa (CAC):

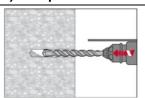
Ugello con un'apertura dell'orifizio di minimo 3,5 mm di diametro.

Pulizia automatica (AC):

La pulizia viene effettuata durante la perforazione con il sistema di perforazione Hilti TE-CD e TE-YD aspiratore compreso.

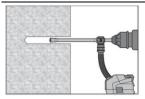
Sistema a iniezione Hilti HIT-HY 200-R

Destinazione d'uso


Attrezzi di posa e pulizia

Allegato B8

Istruzioni per l'installazione


Perforazione

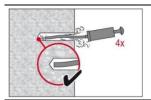
a) Rotopercussione

Praticare il foro alla profondità di posa necessaria con un trapano a percussione impostato sulla modalità rotazione usando una punta in carburo di dimensioni adeguate.

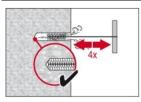
b) Rotopercussione con punta cava per perforatori Hilti

Praticare il foro alla profondità di posa necessaria con una punta cava per perforatori TE-CD o TE-YD Hilti collegata a un aspiratore Hilti VS 20/40 (-Y) (capacità di aspirazione ≥ 57 l/s) con pulizia automatica del filtro attivata. Questo sistema di perforazione rimuove la polvere e pulisce il foro durante la perforazione se usato in conformità con il manuale utente. Quando si usa TE-CD formato 12 e 14 fare riferimento alla Tabella B8.

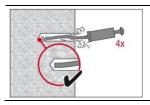
Al termine della perforazione, passare alla fase di "preparazione dell'iniezione" descritta nelle istruzioni per l'installazione.


Pulizia del foro

Immediatamente prima della posa di un ancorante, il foro deve essere privo di polvere e detriti.

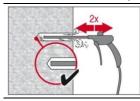

Pulizia manuale (MC)

soltanto calcestruzzo non fessurato


per diametri foro $d_0 \le 20$ mm e profondità foro $h_0 \le 10 \cdot d$

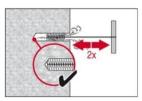
La pompa manuale Hilti può essere utilizzata per praticare fori di diametro fino a $d_0 \le 20$ mm e profondità di posa fino a $h_{ef} \le 10 \cdot d$. Soffiare almeno 4 volte dal retro del foro fino a quando il flusso d'aria di ritorno è privo di polvere osservabile.

Spazzolare 4 volte con lo scovolino indicato (vedere Tabella B8) inserendo lo scovolino d'acciaio Hilti HIT-RB nel retro del foro (se necessario, con la prolunga) con movimento di torsione e rimuovendolo. Lo scovolino deve produrre una naturale resistenza entrando nel foro (\varnothing scovolino $\ge \varnothing$ foro) - in caso contrario, lo scovolino è troppo piccolo e deve essere sostituito con uno di diametro adeguato.

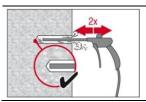

Soffiare nuovamente con pompa manuale Hilti almeno 4 volte finché il flusso d'aria di ritorno sarà privo di polvere osservabile.

Sistema a iniezione Hilti HIT-HY 200-R

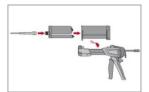
Istruzioni per l'installazione


Allegato B9

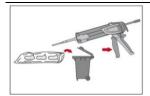
Pulizia ad aria compressa (CAC) per tutti i diametri dei fori do e tutte le profondità di foratura ho


Soffiare 2 volte dal retro del foro (se necessario, con prolunga ugello) per tutta la lunghezza del foro con aria compressa priva di olio (min. 6 bar a 6 m³/h) fino a quando il flusso d'aria di ritorno sarà privo di polvere osservabile.

Per fori di diametro \geq 32 mm il compressore deve alimentare una portata d'aria minima di 140 m³/h.


Spazzolare 2 volte con lo scovolino indicato (vedere Tabella B8) inserendo lo scovolino d'acciaio Hilti HIT-RB nel retro del foro (se necessario, con la prolunga) con movimento di torsione e rimuovendolo.

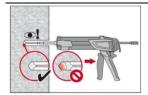
Lo scovolino deve produrre una naturale resistenza entrando nel foro (\emptyset scovolino $\ge \emptyset$ foro) - in caso contrario, lo scovolino è troppo piccolo e deve essere sostituito con uno di diametro adeguato.


Soffiare nuovamente con aria compressa per 2 volte finché il flusso d'aria di ritorno sarà privo di polvere visibile.

Preparazione dell'iniezione

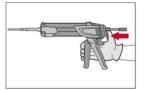
Fissare saldamente l'ugello di miscelazione HIT-RE-M al collettore della cartuccia (montaggio aderente). Non modificare l'ugello di miscelazione. Attenersi alle istruzioni per l'uso del dispenser.

Controllare il corretto funzionamento del portacartucce. Non usare cartucce / supporti danneggiati. Inserire la cartuccia nel portacartucce e posizionare il supporto nel dispenser.

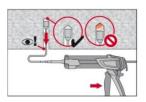

Eliminare la resina iniziale. La cartuccia si apre automaticamente all'inizio dell'erogazione. In base al formato della cartuccia occorre eliminare una quantità iniziale di resina. Le quantità eliminate sono

2 corse per cartuccia da 330 ml, 3 corse per cartuccia da 500 ml,

4 corse per cartuccia da 500 ml ≤ 5 °C.

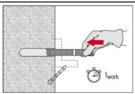

Sistema a iniezione Hilti HIT-HY 200-R

Iniettare la resina dal retro del foro senza formare bolle d'aria.

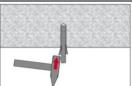


Iniettare la resina partendo dal retro del foro, ritirando lentamente il miscelatore a ogni pressione del grilletto.

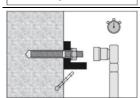
Riempire i fori a circa 2/3 del massimo a garantire che il giunto anulare tra l'ancorante e il calcestruzzo sia completamente pieno di resina lungo la lunghezza di posa.



Al termine dell'iniezione, depressurizzare il dispenser premendo l'apposito grilletto. Ciò previene l'ulteriore erogazione di resina dal miscelatore.

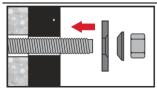


Installazione a soffitto e/o installazione con profondità di posa $h_{\text{ef}} > 250$ mm. Per l'installazione a soffitto, l'iniezione è possibile solamente con l'ausilio di estensioni e galleggianti. Assemblare il miscelatore HIT-RE-M, le prolunghe e un perno d'arresto di dimensioni adeguate (vedere Tabella B8). Inserire il galleggiante nel retro del foro e iniettare la resina. Durante l'iniezione, il galleggiante viene naturalmente espulso dal foro dalla pressione della resina.

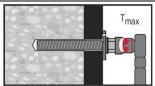

Posa dell'elemento

Prima dell'uso, verificare che l'elemento sia asciutto e privo di olio e altri contaminanti. Contrassegnare e posare l'elemento alla profondità di posa necessaria fino al trascorrere del tempo di lavorazione t_{work}. Il tempo di lavorazione t_{work} è indicato in Tabella B7.

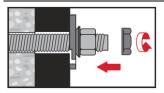
Per l'installazione a soffitto, usare i galleggianti e fissare le parti integrate, ad es. mediante cunei.



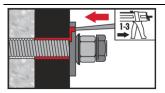
Caricamento dell'ancorante: Una volta trascorso il tempo di indurimento t_{cure} necessario (vedere Tabella B7) è possibile caricare l'ancorante.


La coppia di installazione applicata non deve superare i valori T_{max} indicati in Tabella B2 fino alla Tabella B5.

Sistema a iniezione Hilti HIT-HY 200-R


Installazione del set di riempimento

Utilizzare il set di riempimento Hilti con dado standard. Rispettare il corretto orientamento di rondella di riempimento e rondella sferica.



La coppia di installazione applicata non deve superare i valori T_{max} indicati in Tabella B2 fino alla Tabella B5.

Optional:

Installazione del dado di bloccaggio. Serrare con $\frac{1}{4}$ fino a $\frac{1}{2}$ giro. (Non per formato M24)

Riempire il giunto anulare tra la barra di ancoraggio e il fissaggio con 1-3 corse di resina a iniezione Hilti HIT-HY 200 R.

Rispettare le istruzioni per l'installazione fornite con la cartuccia HIT-HY 200 A.

Sistema a iniezione Hilti HIT-HY 200-R

Tabella C1: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... e AM 8.8 sotto carichi di trazione nel calcestruzzo

HIT-HY 200-R con barra filettata, HIT-	V, AM 8	3.8	M8	M10	M12	M16	M20	M24	M27	M30
Fattore di sicurezza dell'installazione	γ2	[-]				1	,0		1	I
Cedimento dell'acciaio		•								
Resistenza caratteristica dell'acciaio	N _{Rk,s}	[kN]				As	· f _{uk}			
Fattore di sicurezza parziale qualità 5.8	$\gamma_{\text{Ms},N}{}^{1)}$	[-]				1	,5			
Fattore di sicurezza parziale qualità 8.8	$\gamma_{Ms,N^1)}$	[-]				1	,5			
Fattore di sicurezza parziale HIT-V-R	$\gamma_{Ms,N^1)}$	[-]			1,	86			2,	86
Fattore di sicurezza parziale HIT-V- HCR	γMs,N ¹⁾	[-]			1,5				2,1	
Estrazione combinata e rottura del co	no di cal	cestruzzo								
Resistenza di adesione caratteristica ne	l calcestru	ızzo non fe	essura	ato C20	0/25					
Intervallo di temperatura I: 40 °C/24 °C	$ au_{Rk,ucr}$	[N/mm ²]				1	8			
Intervallo di temperatura II: 80 °C/50 °C	$ au_{Rk,ucr}$	[N/mm ²]				1	5			
Intervallo di temperatura III: 120 °C/72 °C	$ au_{Rk,ucr}$	[N/mm ²]				1	3			
Resistenza di adesione caratteristica nel d	calcestruzz	o fessurate	c C20/	/25						
Intervallo di temperatura I: 40 °C/24 °C	$\tau_{Rk,cr}$	[N/mm ²]	7	,5		8,5			9,0	
Intervallo di temperatura II: 80 °C/50 °C	$ au_{Rk,cr}$	[N/mm ²]	6	,0		7,0			7,5	
Intervallo di temperatura III: 120 °C/72 °C	$\tau_{\text{Rk,cr}}$	[N/mm ²]	5	,5		6,0			6,5	
		C30/37				1,	04			
Fattori di incremento per τ _{Rk} nel calcestruzzo	ψc	C40/45				1,	07			
		C50/60				1	,1			
Rottura dovuta a fessurazione										
	h / het	; ≥ 2,0	1	,0 · h _{ef}		2,0				
Distanza dal bordo c _{cr,sp} [mm] per	2,0 > h /	h _{ef} > 1,3	4,6	h _{ef} - 1,8	3 h 1	1,3				
	h / het	: ≤ 1,3	2	,26 h _{ef}			1,0)·h _{ef}	2,26·h _{ef}	C _{cr,s}
Interasse	S _{cr,sp}	[mm]				2.0	cr,sp			

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio e trazione nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C1

Tabella C2: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... e AM 8,8 sotto carichi di taglio

HIT-HY 200-R con barra filettata, HIT-	V, AM	8.8	M8	M10	M12	M16	M20	M24	M27	M30
Cedimento dell'acciaio senza braccio di leva										
Resistenza caratteristica dell'acciaio	$V_{Rk,s}$	[kN]				0,5 · /	∖ s · f _{uk}			
Fattore di sicurezza parziale qualità 5.8	γMs,V ¹⁾	[-]				1,	25			
Fattore di sicurezza parziale qualità 8.8	$\gamma_{Ms,V^{1)}}$	[-]				1,	25			
Fattore di sicurezza parziale HIT-V-R	$\gamma_{Ms,V^{1)}}$	[-]			1,	56			2,	38
Fattore di sicurezza parziale HIT-V- HCR	γMs,V ¹⁾	[-]	1,25 1,75							
Cedimento dell'acciaio con braccio d	i leva									
Momento flettente caratteristico	M^0 Rk,s	[Nm]				1,2 · V	V _{el} · f _{uk}	(
Rottura da scalzamento del calcestru	IZZO									
Fattore in equazione (5.7) del rapporto tecnico TR 029 per la progettazione di ancoranti chimici	k	[-]				2	,0			
Cedimento per rottura del bordo del	calcestru	JZZO								
Il valore di h _{ef} per il calcolo in equazioni (5.8a) e (5.8b) del Rapporto Tecnico TR 029 è limitato da:			min (h _{ef} ; 12 · d _{nom})							
Diametro esterno dell'ancorante	d _{nom}	[mm]	8	10	12	16	20	24	27	30

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C2

Tabella C3: Valori caratteristici di resistenza per bussola a filetto interno HIS-(R)N sotto carichi di trazione nel calcestruzzo

Hilti HIT-HY 200-R con HIS-(R)N			M8	M10	M12	M16	M20
Fattore di sicurezza dell'installazion	ne γ ₂	[-]		•	1,0	•	
Cedimento riferito ad acciaio ba	rre filettate	-					
Resistenza caratteristica HIS-N con vite qualità 8.8	N _{Rk,s}	[kN]	25	46	67	125	116
Fattore di sicurezza parziale	γ _{Ms,N} 1)	[-]			1,50		
Resistenza caratteristica HIS-RN con vite qualità 70	$N_{Rk,s}$	[kN]	26	41	59	110	166
Fattore di sicurezza parziale	$\gamma_{\text{Ms},N}{}^{1)}$	[-]			1,87		2,4
Resistenza combinata a sfilamen	nto e rottura	a del cono	di calces	struzzo			
Profondità di ancoraggio effettiva	h _{ef}	[mm]	90	110	125	170	205
Diametro effettivo dell'ancorante	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6
Resistenza di adesione caratteristic	ca nel calces	struzzo non	fessurato	C20/25			
Intervallo di temperatura I: 40 °C/24	1 °C τ _{Rk,ucr}	[N/mm²]			13		
Intervallo di temperatura II: 80 °C/50) °C τ _{Rk,ucr}	[N/mm²]			11		
Intervallo di temperatura III: 120 °C/72	2°C τ _{Rk,ucr}	[N/mm²]			9,5		
Resistenza di adesione caratteristica	nel calcestru	zzo fessurato	C20/25				
Intervallo di temperatura I: 40 °C/24	1°C τ _{Rk,cr}	[N/mm²]			7		
Intervallo di temperatura II: 80 °C/50) °C τ _{Rk,cr}	[N/mm²]			5,5		
Intervallo di temperatura III: 120 °C/72	2°C τ _{Rk,cr}	[N/mm²]			5		
		C30/37			1,04		
Fattore di incremento per τRk nel calcestruzzo	ψc	C40/45			1,07		
The salessa uzzs		C50/60			1,1		
Rottura dovuta a fessurazione ri	levante per	calcestruz	zo non f	essurato)		
	h / h	_{ef} ≥ 2,0	1,0	·h _{ef}	2,0		
Distanza dal bordo c _{cr,sp} [mm] per	2,0 > h /	h _{ef} > 1,3	4,6·h _{ef}	- 1,8⋅h	1,3		
	h / h	_{ef} ≤ 1,3	2,26	S·h _{ef}	+	1,0·h _{ef} 2,	c _{cr,s}
Interasse	Scr,sp	[mm]			2·c _{cr,sp}		

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio e trazione nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C3

Tabella C4: Valori caratteristici di resistenza per bussola a filetto interno HIS-(R)N sotto carichi di taglio nel calcestruzzo

Hilti HIT-HY 200-R con HIS-(R)N			M8	M10	M12	M16	M20	
Cedimento dell'acciaio senza braccio di leva)							
Resistenza caratteristica HIS-N con vite qualità 8.8	$V_{Rk,s}$	[kN]	13	23	34	63	58	
Fattore di sicurezza parziale	$\gamma_{Ms,V}^{1)}$	[-]			1,25			
Resistenza caratteristica HIS-RN con vite qualità 70	$V_{Rk,s}$	[kN]	13	20	30	55	83	
Fattore di sicurezza parziale	$\gamma_{Ms,V}^{1)}$	[-]		1,	56		2,0	
Cedimento dell'acciaio con braccio d	Cedimento dell'acciaio con braccio di leva							
Resistenza caratteristica HIS-N con vite qualità 8.8	$M^{o}_{Rk,s}$	[Nm]	30	60	105	266	519	
Fattore di sicurezza parziale	$\gamma_{Ms,V}^{1)}$	[-]			1,25			
Resistenza caratteristica HIS-RN con vite qualità 70	M ^o Rk,s	[Nm]	26	52	92	233	454	
Fattore di sicurezza parziale	$\gamma_{Ms,V}^{1)}$	[-]			1,56			
Rottura da scalzamento del calcestruzzo								
Fattore in equazione (5.7) del rapporto tecnico TR 029 per la progettazione di ancoranti chimici	k	[-]			2,0			
Cedimento per rottura del bordo del	calcestruz	zo						
Diametro esterno dell'ancorante	d _{nom}	[mm]	12,5	16,5	20,5	25,4	27,6	

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C4

Tabella C5: Valori caratteristici di resistenza per ancorante a trazione HZA / HZA-R sotto carichi di trazione nel calcestruzzo

Hilti HIT-HY 200-R con HZA, HZA	ı-R		M12	M16	M20	M24		127
Fattore di sicurezza dell'installazion	ne γ ₂	[-]			1,0	l	<u> </u>	
Cedimento dell'acciaio		l						
Resistenza caratteristica HZA	$N_{Rk,s}$	[kN]	46	86	135	194	2	253
Resistenza caratteristica HZA-R	N _{Rk,s}	[kN]	62	111	173	248		-
Fattore di sicurezza parziale	γ _{Ms} 1)	[-]			1,4			
Resistenza combinata a sfilamer	nto e rottura	del cono	di calces	truzzo				
Diametro del ferro di ripresa	d	[mm]	12	16	20	25		28
Resistenza di adesione caratteristic	ca nel calces	truzzo non	fessurato	C20/25				
Intervallo di temperatura I: 40 °C/24	4 °C τ _{Rk,ucr}	[N/mm²]			12			
Intervallo di temperatura II: 80 °C/50	O°C τ _{Rk,ucr}	[N/mm²]			10			
Intervallo di temperatura III: 120 °C/72	2°C τ _{Rk,ucr}	[N/mm²]			8,5			
Resistenza di adesione caratteristica	nel calcestruz	zo fessurat	C20/25					
Intervallo di temperatura I: 40 °C/24	4°C τ _{Rk,cr}	[N/mm²]			7			
Intervallo di temperatura II: 80 °C/50	O°C τ _{Rk,cr}	[N/mm²]			5,5			
Intervallo di temperatura III: 120 °C/72	2°C τ _{Rk,cr}	[N/mm²]			5			
		C30/37	1,04					
Fattore di incremento per τRk nel calcestruzzo	ψc	C40/45	1,07					
041000114220		C50/60	1,07 1,1					
Profondità di ancoraggio effettiva Non Profondità di ancoraggio effettiva Per calcolo di Non Profondità di ancoraggio effettiva Profondità di ancoraggio effettiva H	HZA h _{ef}	[mm]			h _{nom} – 20	0		
(TK 029, 3.2.2.3Kesisteriza combinata a	HZA-R h _{ef}	[mm]		h _{non}	n — 100			-
Rottura del cono di calcestruzzo	ı						•	
	HZA h _{ef} HZA-R	[mm]			h_{nom}			
Rottura dovuta a fessurazione ri calcestruzzo non fessurato	levante per							
	h / h _{ef}	≥ 2,0	1,0	h _{ef}	2,0			
Distanza dal bordo c _{cr,sp} [mm] per	2,0 > h /	h _{ef} > 1,3	4,6·h _{ef} -	· 1,8·h	1,3			
	h / h _{ef}	≤ 1,3	2,26	·h _{ef}	-	1,0·h _{ef}	2,26·h _{ef}	C _{cr,sp}
Interasse	S _{cr,sp}	[mm]			2·c _{cr,sp}			

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R

Prestazioni

Valori caratteristici di resistenza sotto carichi di taglio e trazione nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010" Allegato C5

Tabella C6: Valori caratteristici di resistenza per ancorante a trazione HZA, HZA-R sotto carichi di taglio nel calcestruzzo

Hilti HIT-HY 200-R con HZA, HZA-R			M12	M16	M20	M24	M27
Cedimento dell'acciaio senza braccio	di leva						
Resistenza caratteristica HZA	$V_{Rk,s}$	[kN]	23	43	67	97	126
Resistenza caratteristica HZA-R	$V_{Rk,s}$	[kN]	31	55	86	124	-
Fattore di sicurezza parziale	$\gamma_{\text{Ms}}^{1)}$	[-]			1,5		
Cedimento dell'acciaio con braccio d	li leva						
Resistenza caratteristica HZA	M ⁰ _{Rk,s}	[Nm]	72	183	357	617	915
Resistenza caratteristica HZA-R	M ⁰ _{Rk,s}	[Nm]	97	234	457	790	-
Fattore di sicurezza parziale	$\gamma_{\text{Ms}}^{1)}$	[-]			1,5		
Rottura da scalzamento del calcestruzzo							
Fattore in equazione (5.7) del rapporto tecnico TR 029 per la progettazione di ancoranti chimici	k	[-]			2,0		
Cedimento per rottura del bordo del	calcestruz	ZO					
Il valore di h _{ef} per il calcolo in equazioni (5.8a) e (5.8b) del Rapporto Tecnico TF 029 è limitato da:				min ((h _{nom} ; 12 ·	d _{nom})	
Diametro esterno dell'ancorante	d _{nom}	[mm]	12	16	20	24	27

¹⁾ In assenza di regolamenti nazionali.

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C6

Tabella C7: Valori caratteristici di resistenza per ferro di ripresa sotto carichi di trazione nel calcestruzzo

HIT-HY 200-R con ferro di	ripresa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Fattore di sicurezza dell'installazion	ne γ ₂	[-]	•	ı •	ı •	1 *	ı •	1,0	1 *	1 *	ı •	1 •	1 •
Cedimento dell'acciaio													
Resistenza caratteristica per ferro di ripresa B500B ai sensi DIN 488:200	9-08 ²⁾ N _{Rk}	s [kN]	28	43	62	85	111	173	270	292	339	388	442
Fattore di sicurezza parziale	³⁾ γMs,I	N ¹⁾ [-]						1,4					
Resistenza combinata a st	filamento	e rottura	del (cono	di cal	lcestr	uzzo						
Diametro del ferro di ripresa	d	[mm]	8	10	12	14	16	20	25	26	28	30	32
Resistenza di adesione cara	atteristica	nel calces	struzz	o non	fessu	urato (C20/2	5					
Intervallo di temperatura I: 40 TRK,ucr [N/mm²								12					
Intervallo di temperatura II: 8 °C/50 °C	30 τ _{Rk,ucr}	[N/mm²]	10										
Intervallo di temperatura III: 120°C/72°C	TRk,ucr	[N/mm²]	8,5										
Resistenza di adesione cara	atteristica	nel calces	struzz	o fess	surato	C20/	25						
Intervallo di temperatura I: 40°C/24°C	TRk,cr	[N/mm²]	-	5					7				
Intervallo di temperatura II: 80°C/50°C	TRk,cr	[N/mm²]	-	4					5,5				
Intervallo di temperatura III: 120°C/72°C	TRk,cr	[N/mm²]	-	3,5					5				
		C30/37						1,04					
Fattore di incremento per τ _R nel calcestruzzo	k ψc	C40/45						1,07					
1101 001000110220		C50/60						1,1					
Rottura dovuta a fessuraz	ione rilev	ante per	calce	estruz	zo no	on fes	surat	0					
_	h / h _{ef}	≥ 2,0		1,0∙h _e	f	-	h/h _{ef}	***************************************				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Distanza dal bordo c _{cr,sp} [mm] per	2,0 > h / h _{ef} > 1,3		4,6	4,6·h _{ef} - 1,8·h									
	h / h _{ef}	≤ 1,3	2	2,26·h	ef				1,0·h _{ef}	2,2	26∙h _{ef}	C _{cr,sp}	
Interasse	Scr,s	p [mm]						2 Ccr,s _l	o				

¹⁾ In assenza di regolamenti nazionali

³⁾ Il fattore di sicurezza parzialeγ Ms,Nche non soddisfa i requisiti previsti dalla DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (3.3a)

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici di resistenza sotto carichi di taglio e trazione nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"	Allegato C7

La resistenza a trazione caratteristica NRk,s per ferri di ripresa che non soddisfano i requisiti previsti dalla DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (5.1)

Tabella C8: Valori caratteristici di resistenza per ferro di ripresa sotto carichi di taglio in calcestruzzo

taglio in cald	cestruz	ZO											
HIT-HY 200-R con ferro di ripr	esa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	φ 25	ф 26	ф 28	ф 30	ф 32
Cedimento dell'acciaio senza braccio di leva													
Resistenza caratteristica per ferro di ripresa B500B ai sensi DIN 488:2009-08 ²⁾	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	146	169	194	221
Fattore di sicurezza parziale 4)	fattore di sicurezza parziale ⁴⁾ γ _{Ms,V} ¹⁾ [-]							1,5					
Cedimento dell'acciaio con br	accio di	leva											
Resistenza caratteristica per ferro di ripresa B500B ai sensi DIN 488:2009-08 ³⁾	$M^{o}_{Rk,s}$	[Nm]	33	65	112	178	265	518	1012	1139	1422	1749	2123
Rottura da scalzamento del ca	alcestru	zzo	•		•	•	•	•	•	•	•	•	
Fattore in equazione (5.7) del rapporto tecnico TR 029 per la progettazione di ancoranti chimici	k	[-]						2,0					
Cedimento per rottura del bor	do del c	alcest	ruzzo)									
Il valore di hef per il calcolo in ed e (5.8b) del Rapporto Tecnico T limitato da:		(5.8a)				1	min (h	n _{ef} ; 12	· d _{nom})			
Diametro esterno dell'ancorante	d _{nom}	[mm]	8	10	12	14	16	20	25	26	28	30	32
 In assenza di regolamenti r 	nazionali												

In assenza di regolamenti nazionali

Sistema a iniezione Hilti HIT-HY 200-R	

Valori caratteristici di resistenza sotto carichi di taglio nel calcestruzzo Progettazione secondo il "Rapporto Tecnico EOTA TR 029, edizione settembre 2010"

La resistenza a taglio caratteristica VRk,s per ferri di ripresa che non soddisfano i requisiti previsti dalla DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (5.5)

La resistenza a flessione caratteristica M⁰_{Rk,s} per ferri di ripresa che non soddisfano i requisiti previsti dalla DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (5.6b).

⁴⁾ Il fattore di sicurezza parziale γ_{Ms,}vper ferro di ripresa che non soddisfa i requisiti previsti dalla DIN 488 dovrà essere calcolato in base al Rapporto Tecnico 029, Equazione (3.3b) o (3.3c).

Tabella C9: Spostamenti sotto carico di trazione

Hilti HIT-HY 200- AM 8.8	R con bar	ra filettata, HIT-V,	М8	M10	M12	M16	M20	M24	M27	M30
Intervallo di tempe	eratura I ca	lcestruzzo non fessura	to : 40°	C / 24°	С					
Constant	δνο	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08
Spostamento	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16
Intervallo di temperatura II calcestruzzo non fessurato : 80°C / 50°C										
Crastamanta	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12
Spostamento	δ _{N∞}	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16
Intervallo di temperatura III calcestruzzo non fessurato : 120°C / 72°C										
Spostamento	δνο	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16
	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17
Intervallo di tempe	eratura I ca	ılcestruzzo fessurato : 4	10°C / 2	24°C						
Chaotamanta	δ_{N0}	[mm/(N/mm²)]				0,	07			
Spostamento	δ _{N∞}	[mm/(N/mm²)]				0,	16			
Intervallo di tempe	eratura II ca	alcestruzzo fessurato :	80°C /	50°C						
Chaotamanta	δ_{N0}	[mm/(N/mm²)]	0,10							
Spostamento	δ _{N∞}	[mm/(N/mm²)]				0,	22			
Intervallo di tempe	eratura III c	alcestruzzo fessurato :	120°C	/ 72°C						
Chastamanta	δνο	[mm/(N/mm²)]				0,	13			
Spostamento	δ _{N∞}	[mm/(N/mm²)]				0,	29			

Tabella C10: Spostamenti sotto carico di taglio

Hilti HIT-HY 200-R con barra filettata, HIT-V			M8	M10	M12	M16	M20	M24	M27	M30
0	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Spostamento	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Spostamenti con barra filettata, HIT-V e AM 8.8	Allegato C9

Tabella C11: Spostamenti sotto carico di trazione

Hilti HIT-HY 200-	R con H	IS-(R)N	М8	M10	M12	M16	M20		
Intervallo di tempe	eratura I	calcestruzzo non	fessurato:	40°C / 24°C			•		
Canadamanta	δηο	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08		
Spostamento	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14		
Intervallo di tempe	eratura I	l calcestruzzo noi	n fessurato :	80°C / 50°C					
Con a standard and a	δηο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11		
Spostamento	διν∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15		
Intervallo di temperatura III calcestruzzo non fessurato : 120°C / 72°C									
Spostamento -	δηο	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14		
	δn∞	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15		
Intervallo di tempe	eratura I	calcestruzzo fess	surato : 40°C	/ 24°C					
Concepto on a conte	δηο	[mm/(N/mm²)]			0,11				
Spostamento	δn∞	[mm/(N/mm²)]			0,16				
Intervallo di tempe	eratura I	l calcestruzzo fes	surato : 80°C	C / 50°C					
Chaotamanta	δηο	[mm/(N/mm²)]			0,15				
Spostamento	δn∞	[mm/(N/mm²)]			0,22				
Intervallo di tempe	eratura I	II calcestruzzo fe:	ssurato : 120	°C / 72°C					
Spectamente	δηο	[mm/(N/mm²)]			0,20				
Spostamento	δn∞	[mm/(N/mm²)]	0,29						

Tabella C12: Spostamenti sotto carico di taglio

Hilti HIT-HY 200-R con HIS-(R)N			М8	M10	M12	M16	M20
Spectamenta	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Spostamento -	δν∞	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Spostamenti con HIS-(R)N	Allegato C10

Tabella C13: Spostamenti sotto carico di trazione

Hilti HIT-HY 200-R	on HZA, HZA	-R	M12	M16	M20	M24	M27		
Intervallo di tempera	tura I calcestru	ızzo non fessurato: 4	0°C / 24°C	,					
Consiste manufa	δνο	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08		
Spostamento –	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15		
Intervallo di tempera	tura II calcestro	uzzo non fessurato: 8	80°C / 50°C						
Crastamanta	δνο	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,11		
Spostamento –	δn∞	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15		
Intervallo di tempera	tura III calcestr	uzzo non fessurato:	120°C / 72	2°C					
Spostamento —	δνο	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14		
	δn∞	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16		
Intervallo di tempera	tura I calcestru	ızzo fessurato: 40°C	/ 24°C						
Chaotamanta	δνο	[mm/(N/mm²)]			0,11				
Spostamento —	δn∞	[mm/(N/mm²)]			0,16				
Intervallo di tempera	tura II calcestro	uzzo fessurato: 80°C	/ 50°C						
Canadamanta	δνο	[mm/(N/mm²)]			0,15				
Spostamento —	δn∞	[mm/(N/mm²)]			0,22				
Intervallo di tempera	tura III calcestr	ruzzo fessurato: 120°	C / 72°C						
Spectamente	δηο	[mm/(N/mm²)]	/mm²)]			0,20			
Spostamento –	δn∞	[mm/(N/mm²)]	0,29						

Tabella C14: Spostamenti sotto carico di taglio

Hilti HIT-HY 200	-R con HZA, HZA-R		M12	M16	M20	M24	M27
Chastamenta	δνο	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Spostamento	δ_{V_∞}	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Allegato C11

Tabella C15: Spostamenti sotto carico di trazione

Hilti HIT-HY 200-R c	on fe	ro di ripresa	ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Intervallo di temperat	ura I c	calcestruzzo nor	ı fessu						_				
0	δηο	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,08	0,09	0,09
Spostamento -	$\delta_{N^{\infty}}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,14	0,15	0,16	0,17
Intervallo di temperat	ura II	calcestruzzo no	n fess	urato	80°C	/ 50°C						•	
	δηο	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,11	0,12	0,12
_	δn∞	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,15	0,16	0,17
Intervallo di temperat	ura III	calcestruzzo no	on fessurato : 120°C / 72°C										
Chastamenta	δηο	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,13	0,14	0,15	0,16
Spostamento -	δn∞	[mm/(N/mm²)]	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,15	0,16	0,17	0,18
Intervallo di temperat	ura I d	calcestruzzo fes	surato	: 40°0	C / 24°	С							
Spootomonto	δνο	[mm/(N/mm²)]						0,11					
Spostamento -	δn∞	[mm/(N/mm²)]						0,16					
Intervallo di temperat	ura II	calcestruzzo fes	surato	o : 80°	C / 50	°C							
Spostamento -	δηο	$[mm/(N/mm^2)]$						0,15					
Spostamento	δn∞	$[mm/(N/mm^2)]$	0,22										
Intervallo di temperat	ura III	calcestruzzo fe	essurato : 120°C / 72°C										
Sportamente	δ_{N0}	[mm/(N/mm²)]	0,20										
Spostamento -	δn∞	[mm/(N/mm²)]			•		•	0,29	•	•		•	

Tabella C16: Spostamenti sotto carico di taglio

Hilti HIT-HY 200-R	on ferro	di ripresa	ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Spectamenta	δνο	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03	0,03
Spostamento	δν∞	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni	Allegato C12
Spostamenti con ferro di ripresa	

La progettazione sismica deve essere effettuata ai sensi del TR 045 "Progettazione di ancoranti metallici sotto azione sismica"

Tabella C17: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... e AM 8.8 sotto carichi di trazione per sollecitazione sismica categoria C1

HIT-HY 200-R con barra filettata, HIT	-V, AM	8.8	M8	M10	M12	M16	M20	M24	M27	M30
Cedimento dell'acciaio										
HIT-V-5.8(F), barra filettata 5.8	N _{Rk,s,seis}	[kN]	-	29	42	79	123	177	230	281
HIT-V-8.8(F), barra filettata 8.8	N _{Rk,s,seis}	[kN]	-	46	67	126	196	282	367	449
HIT-V-R, barra filettata A4-70	$N_{Rk,s,seis}$	[kN]	-	41	59	110	172	247	230	281
HIT-V-HCR, barra filettata HCR-80	$N_{Rk,s,seis}$	[kN]	-	46	67	126	196	247	321	393
Estrazione combinata e rottura del c	ono di ca	lcestruzzo)							
Resistenza di adesione caratteristica ne	el calcestr	uzzo fessu	ırato C	20/25						
Intervallo di temperatura I: 40 °C/24 °C	τRk,seis	[N/mm ²]	-	5,2			7	,0		
Intervallo di temperatura II: 80 °C/50 °C	TRk,seis	[N/mm ²]	-	3,9			5	,7		
Intervallo di temperatura III: 120 °C/72 °C	[N/mm ²]	-	3,5			4	,8			

Tabella C18: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... e AM 8.8 sotto carichi di taglio per sollecitazione sismica categoria C1

HIT-HY 200-R con barra filettata, HI	Γ-V, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30
Cedimento dell'acciaio senza bracc	io di leva									
HIT-V-5.8(F), barra filettata 5.8	$V_{Rk,s,seis}$	[kN]	-	11	15	27	43	62	81	98
HIT-V 8.8(F), barra filettata 8.8	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	99	129	157
HIT-V R, barra filettata A4-70	$V_{Rk,s,seis}$	[kN]	-	14	21	39	60	87	81	98
HIT-V HCR, barra filettata HCR-80	$V_{Rk,s,seis}$	[kN]	-	16	24	44	69	87	113	137

Tabella C19: Spostamenti da carico di trazione per sollecitazione sismica categoria C1

HIT-HY 200-R con barra filettata,	HIT-V, AM 8.	8	М8	M10	M12	M16	M20	M24	M27	M30
Spostamento 1)	δ N,seis	[mm]	-	0,8	0,8	0,8	0,8	0,8	0,8	0,8

¹⁾ Spostamento massimo durante il ciclo (evento sismico).

Tabella C20: Spostamenti da carico di taglio per sollecitazione sismica categoria C1

HIT-HY 200-R con barra filettata, HIT-V, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30	
Spostamento 1)	δ V,seis	[mm]	-	3,5	3,8	4,4	5,0	5,6	6,1	6,5

Spostamento massimo durante il ciclo (evento sismico).

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici per prestazione sismica categoria C1 e spostamenti Progettazione ai sensi del "Rapporto Tecnico EOTA TR045, edizione febbraio 2013"	Allegato C13

Tabella C21: Valori caratteristici di resistenza per ancorante a trazione HZA, HZA-R sotto carichi di trazione per sollecitazione sismica categoria C1

HIT-HY 200-R con ancorante a tra:	zione Hilti H	IZA,	M12	M16	M20	M24	M27
Cedimento dell'acciaio							
Resistenza caratteristica HZA	N _{Rk,s,seis}	[kN]	46	86	135	194	253
Resistenza caratteristica HZA-R	N _{Rk,s,seis}	[kN]	62	111	173	248	-
Fattore di sicurezza parziale	γMs,N,seis ¹) [-]			1,4		
Resistenza combinata a sfilament	o e rottura	del cono d	di calces	truzzo)			
Diametro del ferro di ripresa	d	[mm]	12	16	20	25	28
Resistenza di adesione caratteristica	a nel calcest	ruzzo fess	urato C2	0/25			
Intervallo di temperatura I: 40°C/24°	C τ _{Rk,cr}	[N/mm²]			6,1		
Intervallo di temperatura II: 80°C/50°	°C τ _{Rk,cr}	[N/mm²]			4,8		
Intervallo di temperatura III: 120°C/7	2°C τ _{Rk,cr}	[N/mm²]			4,4		

¹⁾ In assenza di regolamenti nazionali.

Tabella C22: Valori caratteristici di resistenza per ancorante a trazione HZA, HZA-R sotto carichi di taglio per sollecitazione sismica categoria C1

HIT-HY 200-R con ancorante a trazione Hilti HZA, HZA-R				M16	M20	M24	M27
Cedimento dell'acciaio senza brac di leva	cio						
Resistenza caratteristica HZA	V _{Rk,s,seis}	[kN]	16	30	47	68	88
Resistenza caratteristica HZA-R	V _{Rk,s,seis}	[kN]	22	39	60	124	-
Fattore di sicurezza parziale	γMs,V,seis ¹⁾	[-]			1,5		

¹⁾ In assenza di regolamenti nazionali.

Tabella C23: Spostamenti da carico di trazione per sollecitazione sismica categoria C1

HIT-HY 200-R con ancorante a trazione Hilti HZA, HZA-R				M16	M20	M24	M27
Spostamento 1)	$\delta_{\text{N,seis}}$	[mm]	1,3	1,3	1,3	1,3	1,3

Spostamento massimo durante il ciclo (evento sismico).

Tabella C24: Spostamenti da carico di taglio per sollecitazione sismica categoria C1

HIT-HY 200-R con ancorante a trazione Hilti HZA, HZA-R				M16	M20	M24	M27
Spostamento 1)	$\delta_{V,seis}$	[mm]	3,8	4,4	5,0	5,6	6,1

¹⁾ Spostamento massimo durante il ciclo (evento sismico).

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici per prestazione sismica categoria C1 e spostamenti Progettazione ai sensi del "Rapporto Tecnico EOTA TR 045, edizione febbraio 2013"	Allegato C14

Tabella C25: Valori caratteristici di resistenza dell'acciaio per ferro di ripresa sotto carichi di trazione per sollecitazione sismica categoria C1

HIT-HY 200-R con ferro di rip	resa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Cedimento dell'acciaio													
Resistenza caratteristica per ferro di ripresa B500B ai sensi DIN 488:2009-081)	N_{Rk}	seis [kN]	-	43	62	85	111	173	270	292	339	388	442
Resistenza combinata a sfilamento e rottura del cono di calcestruzzo													
Diametro del ferro di ripresa	d	[mm]	-	10	12	14	16	20	25	26	28	30	32
Resistenza di adesione caratte	ristica	nel calces	struzz	o fess	surato	C20/	25						
Intervallo di temperatura I: 40°C/24°C	τ _{Rk,cr}	[N/mm²]	-	4,4				6,1					
Intervallo di temperatura II: 80°C/50°C	TRk,cr	[N/mm²]	-	3,5				4,8					
Intervallo di temperatura III: 120°C/72°C	τ _{Rk,cr}	[N/mm²]	-	3				4,4					

La resistenza caratteristica a trazione N_{Rk,s,seis} per ferri di ripresa che non soddisfano i requisiti ai sensi della DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (5.1), N_{Rk,s,seis} = N_{Rk,s}.

Tabella C26: Valori caratteristici di resistenza dell'acciaio per ferro di ripresa sotto carichi di taglio per sollecitazione sismica categoria C1

HIT-HY 200-R con ferro di ripresa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32
Cedimento dell'acciaio senza braccio di leva												
Resistenza caratteristica per ferro di ripresa B500B ai sensi V _F DIN 488:2009-08	Rk,s,seis [kN]	-	15	22	29	39	60	95	102	118	135	165

La resistenza caratteristica a taglio V_{Rk,s,seis} per ferri di ripresa che non soddisfano i requisiti ai sensi della DIN 488 dovrà essere calcolata in base al Rapporto Tecnico TR 029, Equazione (5.5), V_{Rk,s,seis}= 0,7 x V_{Rk,s}

Tabella C27: Spostamenti da carico di trazione per sollecitazione sismica categoria C1

Hilti HIT-HY 200-R con ferro di ripresa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32	
Spostamento 1)	δ N,seis	[mm]	-	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3

¹⁾ Spostamento massimo durante il ciclo (evento sismico).

Tabella C28: Spostamenti da carico di taglio per sollecitazione sismica categoria C1

Hilti HIT-HY 200-R con ferro di ripresa		ф8	ф 10	ф 12	ф 14	ф 16	ф 20	ф 25	ф 26	ф 28	ф 30	ф 32	
Spostamento 1)	δ V,seis	[mm]	1	3,5	3,8	4,1	4,4	5,0	5,8	6,2	6,2	6,8	6,8

¹⁾ Spostamento massimo durante il ciclo (evento sismico).

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici per prestazione sismica categoria C1 e spostamenti Progettazione ai sensi del "Rapporto Tecnico EOTA TR 045, edizione febbraio 2013"	Allegato C15

Tabella C29: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... e AM 8.8 sotto carichi di trazione per sollecitazione sismica categoria C2

HIT-HY 200-R con barra filettata, HIT-V, AM 8.8	M8	M10	M12	M16	M20	M24	M27	M30			
Cedimento dell'acciaio											
HIT-V (-F) 8.8, AM (HDG) 8.8 Barra filettata standard commerciale N _{Rk,s,seis} [kN] elettrozincata 8.8		-		126	196	282		-			
Estrazione combinata e rottura del cono di calcestruzzo											
Resistenza di adesione caratteristica nel calcestruzzo fessurato C20/25 in fori praticati con trapano a percussione e fori praticati con trapano a percussione con punta cava per perforatori Hilti TE-CD o TE-YD											
Intervallo di temperatura I: 40 °C/24 °C _{TRk,seis} [N/mm²]		-		3,9	4,3	3,5		•			
Intervallo di temperatura II: 80 °C/50 °C τRk,seis [N/mm²]		-		3,3	3,7	2,9		•			
Intervallo di temperatura III: 120 °C/72 °C τ _{Rk,seis} [N/mm²]		-		2,8	3,2	2,5		•			

Tabella C30: Valori caratteristici di resistenza dell'acciaio per barre filettate, HIT-V-... 8.8 e AM 8.8 sotto carichi di taglio per sollecitazione sismica categoria C2

HIT-HY 200-R con barra filettata, HIT-V	IT-HY 200-R con barra filettata, HIT-V, AM 8.8					M16	M20	M24	M27	M30	
Cedimento dell'acciaio senza braccio di leva con set di riempimento Hilti											
HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		46	77	103	-		
Cedimento dell'acciaio senza braccio di leva senza set di riempimento Hilti											
HIT-V 8.8, AM 8.8	$V_{Rk,s,seis}$	[kN]		-		40	71	90	-	-	
HIT-V-F 8.8, AM HDG 8.8	V _{Rk,s,seis}	[kN]		-		30	46	66	-	-	
Barra filettata standard commerciale elettrozincata 8.8	$V_{Rk,s,seis}$	[kN]		-		28	50	63	-	•	

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Valori caratteristici per prestazione sismica categoria C2 Progettazione ai sensi del "Rapporto Tecnico EOTA TR 045, edizione febbraio 2013"	Allegato C16

Tabella C31: Spostamenti da carico di trazione per sollecitazione sismica categoria C2

HIT-HY 200-R con barra filettata, HIT	Γ-V, AM 8.8		M8	M10	M12	M16	M20	M24	M27	M30
Spostamento DLS, HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta_{\text{N,seis}(\text{DLS})}$	[mm]		-		0,2	0,5	0,4	-	-
Spostamento ULS, HIT-V (-F) 8.8, AM (HDG) 8.8	$\delta \text{N,seis(ULS)}$	[mm]		-		0,6	0,8	1,0	-	-

Tabella C32: Spostamenti da carico di taglio per sollecitazione sismica categoria C2

HIT-HY 200-R con barra filettata, HIT-V, AM 8.8			M8	M10	M12	M16	M20	M24	M27	M30
Installazione con set di riempimento I	Hilti									
Spostamento DLS, HIT-V 8.8, AM 8,8	δ V,seis(DLS)	[mm]		-		1,2	1,42	1,1	-	•
Spostamento ULS, HIT-V 8.8, AM 8,8	δ V,seis(ULS)	[mm]		-		3,2	3,8	2,6	-	•
Installazione senza set di riempiment	o Hilti									
Spostamento DLS, HIT-V 8.8, AM 8,8	δ V,seis(DLS)	[mm]		-		3,2	2,5	3,5	-	•
Spostamento DLS, HIT-V-F 8.8, AM HDG 8.8	$\delta_{\text{V,seis}(\text{DLS})}$	[mm]		-		2,3	3,8	3,7	-	-
Spostamento ULS, HIT-V 8.8, AM 8,8	δ V,seis(ULS)	[mm]		-		9,2	7,1	10,2	-	•
Spostamento ULS, HIT-V-F 8.8, AM HDG 8.8	$\delta_{\text{V,seis}(\text{ULS})}$	[mm]		-		4,3	9,1	8,4		-

Sistema a iniezione Hilti HIT-HY 200-R	
Prestazioni Spostamenti per prestazione sismica categoria C2 Progettazione ai sensi del "Rapporto Tecnico EOTA TR 045, edizione febbraio 2013"	Allegato C17