

SEISMIC ACADEMY

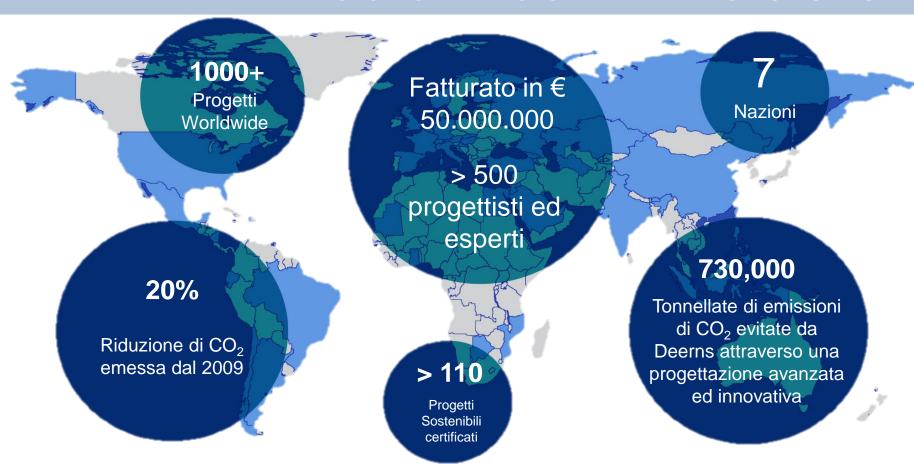
VII Edizione

Progettazione sismoresistente dei componenti impiantistici

BOLOGNA 10 Ottobre 2019

Ing. Giovanni Consonni Technical Director Deerns Italia SpA

A	DEERNS: CHI SIAMO
В	NORMATIVE DI RIFERIMENTO
C	ELEMENTI NON STRUTTURALI IMPIANTISTICI
D	COSTO DELLO STAFFAGGIO ANTISISMICO
Е	CASO STUDIO: III e IV LOTTO OSPEDALE DI UDINE – INQUADRAMENTO GENERALE
F	CASO STUDIO: DIMENSIONAMENTO DEGLI ELEMENTI ANTISIMICI
G	CASO STUDIO: PRESCRIZIONI DI INSTALLAZIONE DI ULTERIORI ELEMENTI NON STRUTTURALI
Н	CONCLUSIONI


PARTE A DEERNS: CHI SIAMO

A.1

LEADER EUROPEO NELL'INGEGNERIA DI INFRASTRUTTURE CRITICHE

- GLOBAL INDEPENDENT LEADER IN BUILDING SERVICES, ENERGY SYSTEMS AND BUILDING PHYSICS
- INTERNATIONAL PRIVATELY OWNED GROUP
- FOUNDED IN 1928, 90 YEARS OF EXPERIENCE
- ONE FIRM PRINCIPLE: WORKING ACCORDING TO INTENATIONAL QUALITY STANDARS
- PROJECTS > 12,500,000,000€ YEARLY
- PATENTED TECHNOLOGIES
- Member of The Green Grid, Nationals Green Building Councils, EGBC

A.2

SETTORI E SERVIZI OFFERTI

SETTORI

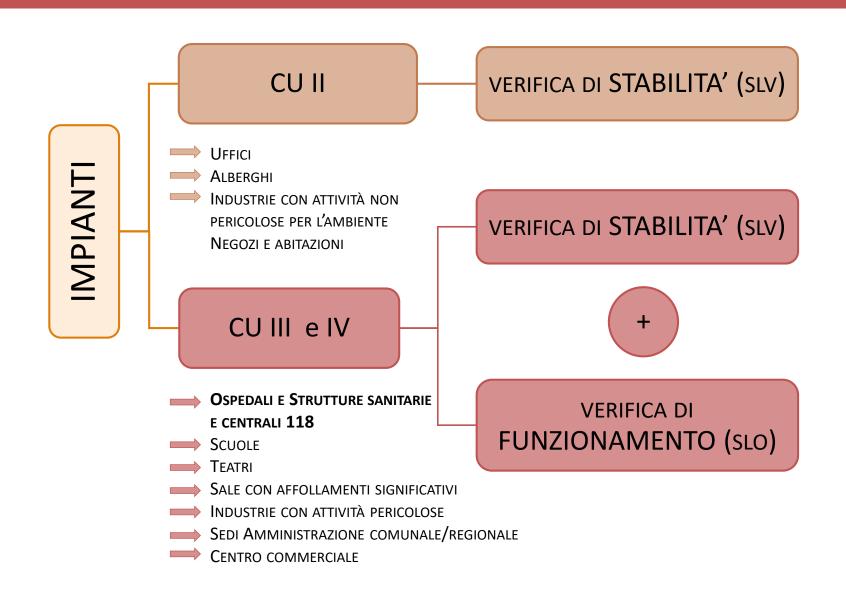
Mission Critical Facility

SERVIZI

- MEP ENGINEERING
- BIM INTEGRATED DESIGN
- VERTICAL TRANSPORTATION
- FIRE STRATEGY
- BUILDING PHYSICS
- Acoustic
- FAÇADE ENGINEERING
- SUISTAINABILITY
- Cost control
- SITE MANAGEMENT
- HEALTH & SAFETY

PARTE B NORMATIVE DI RIFERIMENTO

B.1 NTC 2018 SUGLI IMPIANTI



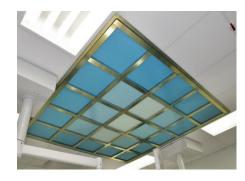
B.2

NTC 2018: VERIFICHE SLU E SLE DEGLI IMPIANTI

PARTE C IMPIANTI

C.1

GRUPPI FRIGORIFERI

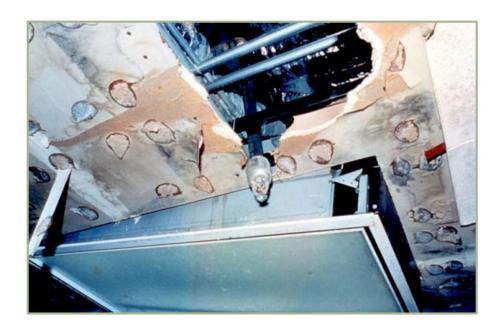

QUADRI ELETTRICI

TUBAZIONI

APPARECCHI DI ILLUMINAZIONE

PLAFONE FILTRANTE SS.OO.

CANALINE ELETTRICHE


CANALI DI VENTILAZIONE

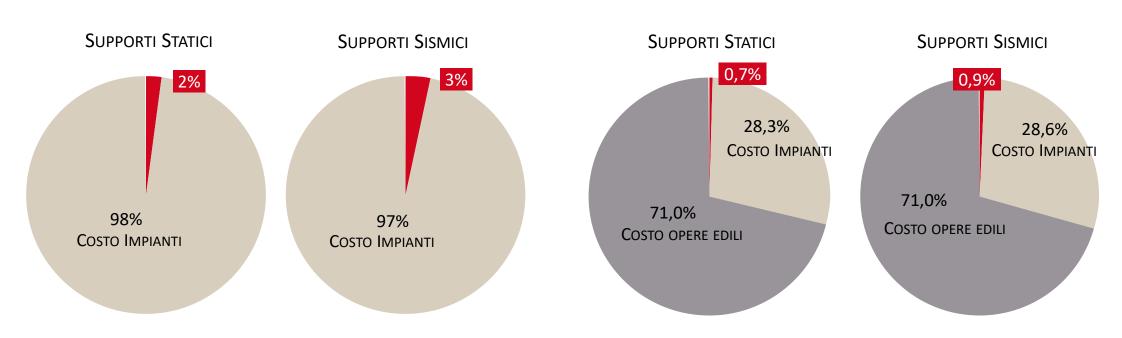
C.2

IMPIANTI: CONSEGUENZE DI UN EVENTO SISMICO

CROLLO DI UN APPARECCHIO DI ILLUMINAZIONE

CROLLO DI APPARECCHI DI ILLUMINAZIONE, CANALI FLESSIBILI PER LA DISTRIBUZIONE DELL'ARIA E SVERGOLAMENTO DELLE TUBAZIONI DELLA RETE ANTINCENDIO

PARTE D COSTO DELLO STAFFAGGIO ANTISISMICO



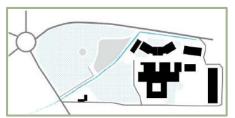
D.1

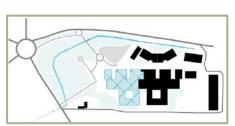
COSTO DELLO STAFFAGGIO ANTI-SISMICO

COSTO DELLO STAFFAGGIO RISPETTO AL COSTO TOTALE DEGLI IMPIANTI

COSTI DELLO STAFFAGGIO RISPETTO AL COSTO TOTALE DELL'OPERA

RICERCA CONDOTTA IN COLLABORAZIONE CON L'UNIVERSITÀ DI ROMA LA SAPIENZA SU UN EDIFICIO COMMERCIALE DI 22000 M²


PARTE E CASO STUDIO: LOTTI III E IV DEL NUOVO OSPEDALE DI UDINE



E.1

LOTTI III E IV LOTTO DEL NUOVO OSPEDALE DI UDINE – INQUADRAMENTO GENERALE

STATO DI FATTO(LOTTI I E II)

STATO DI PROGETTO (LOTTI III E IV)

COSTI

TOTALE

DATI	VALORE
ZONA SISMICA	2
CLASSE D'USO	IV
VITA NOMINALE	>100 ANNI
ACCELERAZIONE AL SUOLO (AG)	0,25 G

DEERNS È RESPONSABILE DI:

- PROGETTO IMPIANTI MECCANICI
- PROGETTO IMPIANTI ELETTRICI
- ENERGIA E SOSTENIBILITÀ
- Building Physics
- PROGETTAZIONE ACUSTICA

DATI DI PROGETTO

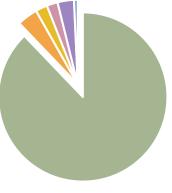
44 NUOVI POSTI LETTO PER DAY HOSPITAL E DAY SURGERY

48 NUOVI POSTI LETTO IN TERAPIA INTENSIVA

30 NUOVI POSTI LETTI PER OSSERVAZIONE BREVE TEMPORANEA E INTENSIVA

19 NUOVE SALE OPERATORIE

243 NUOVI POSTI LETTO ORDINARI


SS.00.

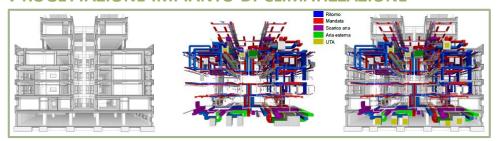
EDILIZIA STRUTTURE IMP. IDRICI E ANTICENDIO IMP. CLIMATIZZAZIONE IMP. ELETTRICI E SPECIALI ONERI ALLA SICUREZZA

m²

€ 299.176.309,34 € 13.432.400,45 € 7.694.817,80 € 7.141.395,73 € 10.670.648,16 € 2.450.000,00

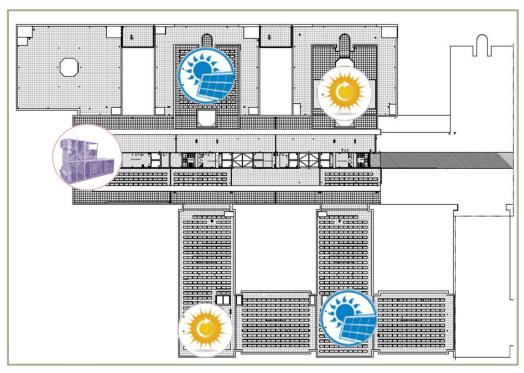
€ 340565571,50

15



E.2

LOTTI III E IV LOTTO DEL NUOVO OSPEDALE DI UDINE – PROGETTAZIONE IMPIANTISTICA


PROGETTAZIONE IMPIANTO DI CLIMATIZZAZIONE

Impianto ad aria primaria					
SOFFITTI RADIANTI	TRAVI ATTIVE	FAN COIL E PAVIMENTO RADIANTE			
DEGENZE	UFFICI	MAIN STREET			

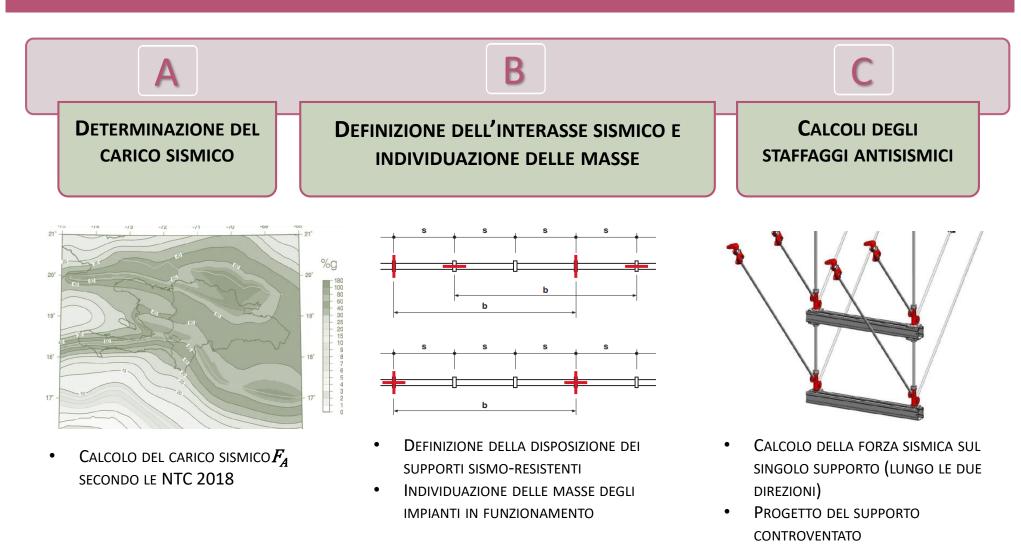
Impianto a tutt'aria					
SALE OPERATORIE E LOCALI ANNESSI	DAY SURGERY	SALA EMODINAMICA E LOCALI ANNESSI			
TERAPIA INTENSIVA, SEMINTENSIVA E LOCALI ANNESSI	PRONTO SOCCORSO AREA URGENZA	DEGENZE POST-OPERATORIE			
CONNETTIVI	SPOGLIATOI	AMBULATORI			

FOTOVOLTAICO

SOLARE TERMICO

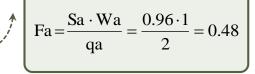
47 Unità di trattamento aria

PARTE F


CASO STUDIO:
DIMENSIONAMENTO
STAFFAGGIO
ANTISISMICO IMPIANTI

F.1

PROCEDIMENTO PROGETTUALE GENERALE



F.2

Caso studio: Determinazione carico sismico (A) e definizione dell'interasse sismico e individuazione delle masse (B)

DATI TECNICI

CLASSIFICAZIONE DI SISMICITÀ

ZONA 2 - ag = 0.25 g

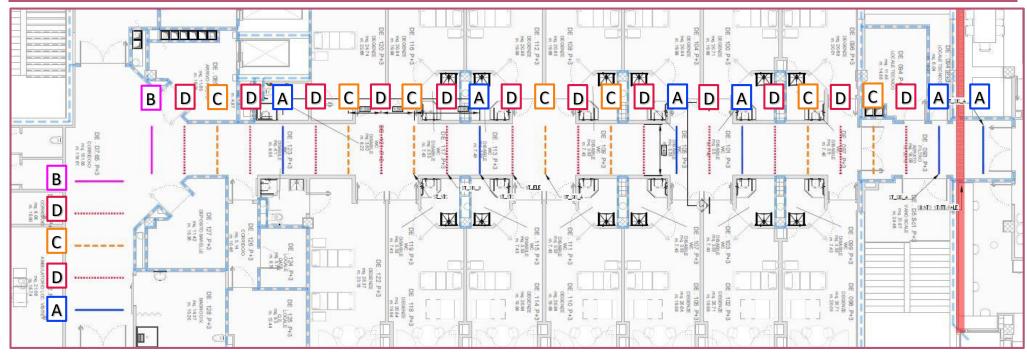
Classe d'uso Vita Nominale

> 100 ANNI

FORZA SISMICA

AZIONE SISMICA
ORIZZONTALE
ASSIALE E
TRASVERSALE PER
PESO UNITARIO

STIMA DELLA MASSE DEGLI IMPIANTI IN FUNZIONAMENTO


Calcolo pesi impianti in funzionamento SEZIONE TIPO 2 - PIANO P+3 ig (interasse statico Tubazioni in acciaio nero diametro Φ28/34 Γubazioni in acciaio nero diametro Φ28/34 2,8 [kg/m] Γubazioni in acciaio nero diametro Φ37/42 3,9 [kg/m] ubazioni in acciaio nero diametro Φ37/42 3,9 [kg/m] ibazioni in acciaio nero diametro Φ37/42 ubazioni in PVC diametro DN 25 0,5 [kg/m] Tubazioni in PVC diametro DN 40 Tubazioni in PVC diametro DN 40 0,49 [kg/m] Fubazioni in acciaio zincato diametro Φ36/42 ubazioni in acciaio zincato diametro Φ42/48 Contenuto acqua Ф28/34 0.61 [lt/m] Contenuto acqua Ф37/42 1,05 [lt/m] ontenuto acqua DN 25 0,35 [lt/m] 0,91 [lt/m] ontenuto acqua Φ36/42 ontenuto acqua Φ42/48 1,38 [lt/m] Peso (kN) Canale PAI 800v300 Peso (kN) Passerelle e cavi Canalina 300x75 P 13,00 [kg/m] Canalina 300x75 C.S. Canalina 200x75 LS/

	$(3 \cdot (1 + 24,21))$
Sa = $\alpha \cdot S \left(\frac{3 \cdot (1 + Z/H)}{1 + (1 - T_a/T_1)^2} - 0.5 \right) = 0.365 \cdot 1.164$	$\left \frac{/28,32)}{1 + (1-0)^2} - 0.5 \right = 0.96$

CASO STUDIO: DEFINIZIONE DELL'INTERASSE SISMICO E INDIVIDUAZIONE DELLE MASSE (B)

KEYPLAN

LEGENDA TIPI DI STAFFAGGI

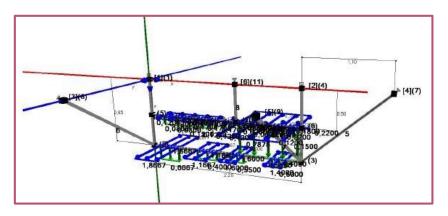
В

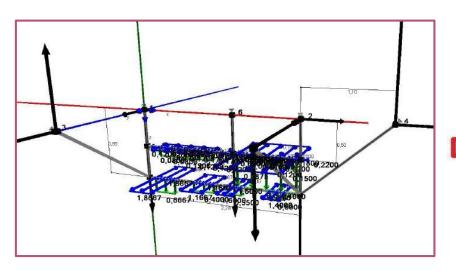
STAFFA STATICA - INTERASSE MASSIMO 3 M

STAFFA ELETTRICA - INTERASSE MASSIMO 1,50 M

DIREZIONI ORTOGONALI A SOSTITUZIONE DELLA 4 VIE

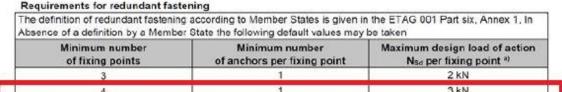
Staffa sisma resistente a 4 vie - Interasse massimo 6 m


STAFFA SISMA RESISTENTE A 2 VIE - INSTALLARSI IN COPPIE CON



F.3

CASO STUDIO: REPORT DI CALCOLO DEI STAFFAGGI SISMICI (C)

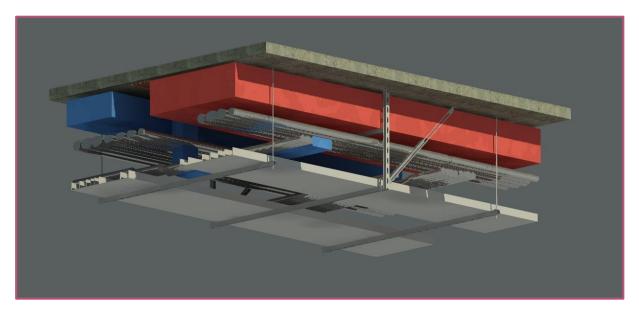

STAFFA SISMO-RESISTENTE A 4 VIE – MODELLO STATICO

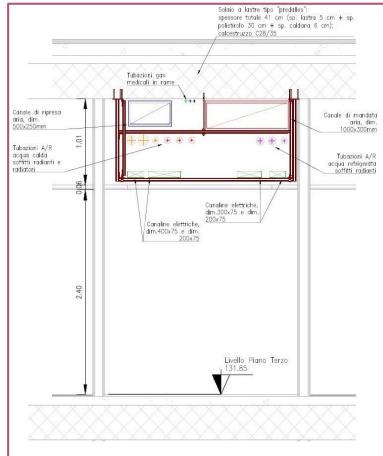
0.0.08003 1.300 3.4.24 3.00 3.7 1809 2200 5

1.8667 0.8667 156/40006 0.9500 1.498600

STAFFA SISMO-RESISTENTE A 4 VIE – SPOSTAMENTO

a) The value for maximum design load of actions per fastening point N₂₀ is valid in general that means all fastening points are considered in the design of the redundant structural system. The value N₂₀ may be increased if the failure of one (= most unfavourable) fixing point is taken into account in the design (serviceability and ultimate limit state) of the structural system e.g. suspended ceiling.

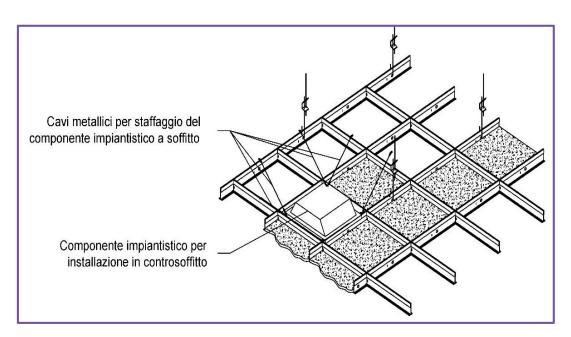

DATI TECNICI DELL' ANCORANTE SCELTO

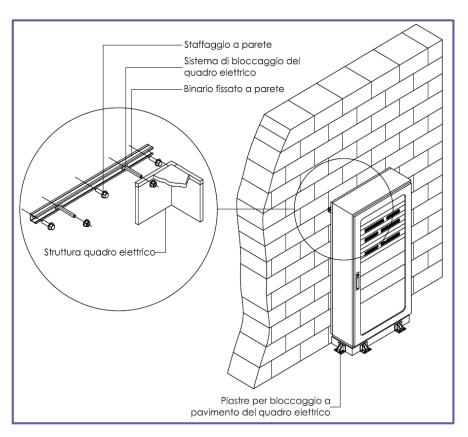

F.5

CASO STUDIO: CALCOLO STAFFAGGI ANTISISMICI

VISTE 3D ESTRAPOLATE DAL MODELLO REVIT: IMPIANTI + STAFFAGGI

SEZIONE TIPO

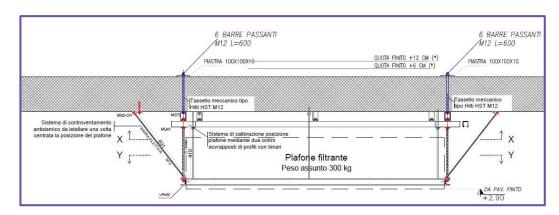

PARTE G CASO STUDIO: PRESCRIZIONI DI INSTALLAZIONE

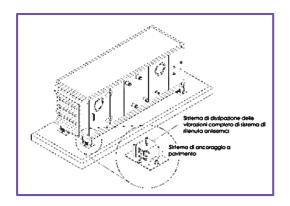


G.1

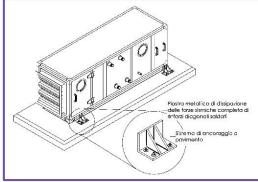
CASO STUDIO: PRESCRIZIONI DI INSTALLAZIONE ANTISISMICHE

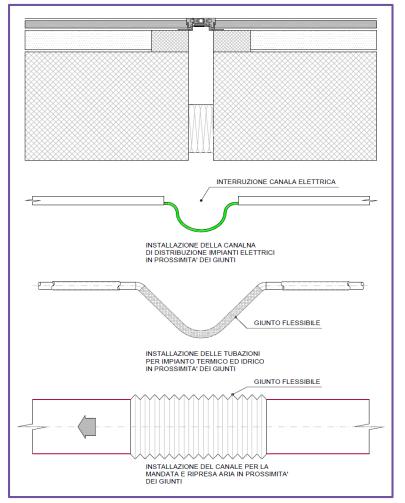
ELEMENTI IMPIANTISTICI INSERITI NEI CONTROSOFFITTI (APPARECCHI DI ILLUMINAZIONE, DIFFUSORI ARIA)


QUADRI ELETTRICI — SOLUZIONE ANTIRIBALTAMENTO



G.2

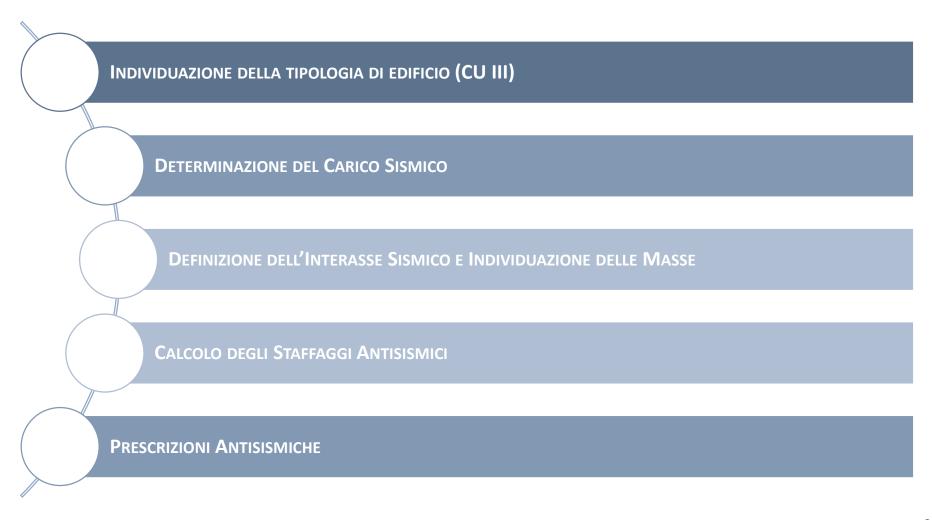

CASO STUDIO: PRESCRIZIONI DI INSTALLAZIONE ANTISISMICHE


PLAFONI FILTRANTI SALE OPERATORIE

Unità di trattamento aria Soluzione con sistemi a molla

Unità di trattamento aria Soluzione con profilati METALLICI A L

Modalità di attraversamento impiantistico dei Giunti strutturali



PARTE H CONCLUSIONI

H.1 Conclusioni

Grazie per l'attenzione

Giovanni Consonni

Technical Director
Deerns Italia
M +39 34 89 01 53 11
giovanni.consonni@deerns.com