

Performance-Based Seismic Design of Non-Structural Building Components

André Filiatrault, PhD, P. Eng.
Professor of Structural Engineering
State University of New York at Buffalo, USA
&

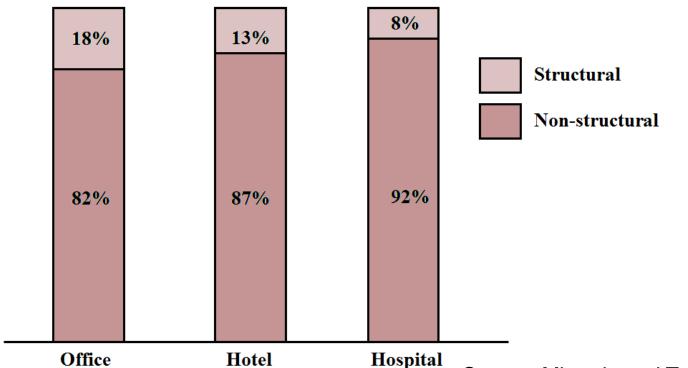
School for Advanced Studies IUSS Pavia, Italy

2018 Hilti Seismic Academy October 3, 2018 Rome, Italy

Acknowledgements

- Daniele Perrone, PhD, Post-doctoral Researcher
- Roberto Merino, PhD Candidate
- Gian Michele Calvi, PhD, Professor

 Italian Ministry of Education, University and Research (MIUR)



Why should we consider Nonstructural Building Components in Seismic Design?

1. Non-structural components represent the major portion of the total investment in typical buildings.

Source: Miranda and Taghavi (2003)

Why should we consider Nonstructural Building Components in Seismic Design?

 Non-structural damage can limit severely the functionality of critical facilities, such as hospitals.

Why should we consider Nonstructural Building Components in Seismic Design?

3. Failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating or of rescuers entering buildings.



Current Force-Based Seismic Design Procedure for Non-structural Components

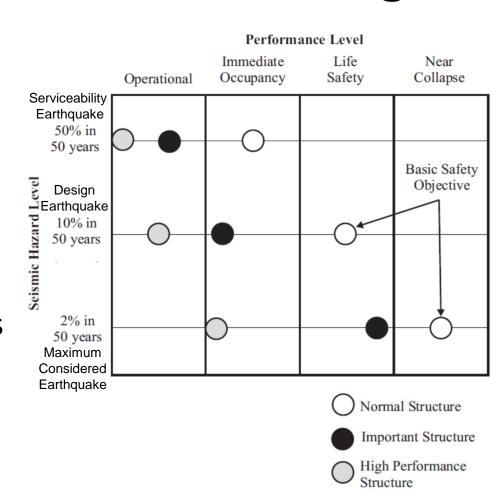
- Estimate of elastic floor spectral accelerations at center of mass of components used to determine required lateral elastic strength.
- Elastic strength divided by a force reduction (behaviour) factor q_a representative of inherent overstrength and ductility capacity of components and attachments.

Eurocode 8:

$$F_a = \frac{S_a \gamma_a}{q_a} W_a$$

$$S_a = a_g S \left(\frac{3(1+z/H)}{1+(1-T_a/T_n)^2} - 0.5 \right) \ge a_g S$$

Current Force-Based Seismic Design Procedure for Non-structural Components


- Major shortcomings:
 - 1. Estimation of the fundamental period of a non-structural component is difficult.
 - 2. Use of fundamental periods of a non-structural component and of the supporting structure is fallacious.
 - 3. Linear amplification of peak floor acceleration with height assumes first mode response of the supporting structure.
 - 4. Damping characteristics of non-structural components ignored.
 - Force reduction (behaviour) factors q_a assigned to non-structural components are highly judgmental.
 - Deformations of non-structural components not directly addressed.
 - 7. Single performance objective (life-safety) considered.

Performance-Based Seismic Design

- Coupling of performance levels to different seismic intensity levels.
- Application to nonstructural components unexplored.
- Current seismic provisions for non-structural components: force-based seismic design procedure.

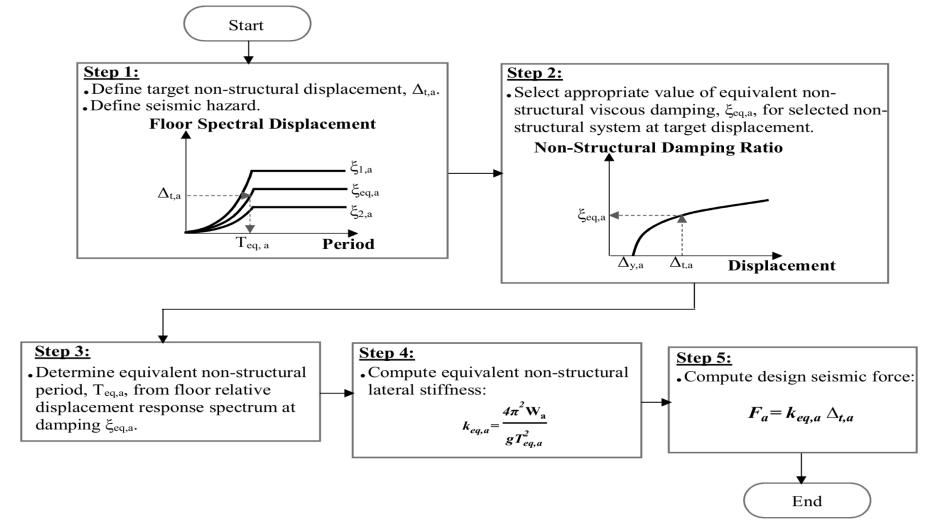
Adapted from Vision 2000 document (SEAOC 1995)

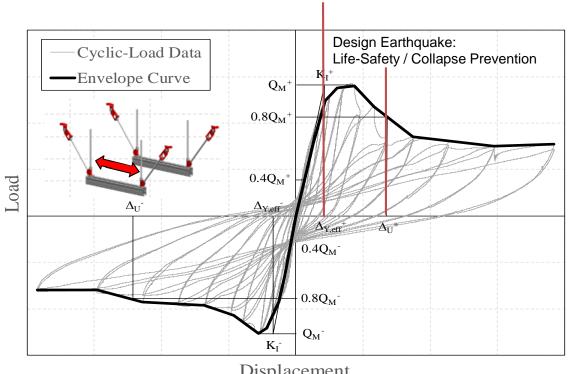
Performance-Based Seismic Design Procedure for Non-structural Components

- Damage driven by excessive displacements relative to the supporting structure for many non-structural component typologies.
- Wouldn't a displacementbased seismic design procedure for nonstructural components makes more sense?

Suspended Utilities and Equipment:

Anchored Equipment

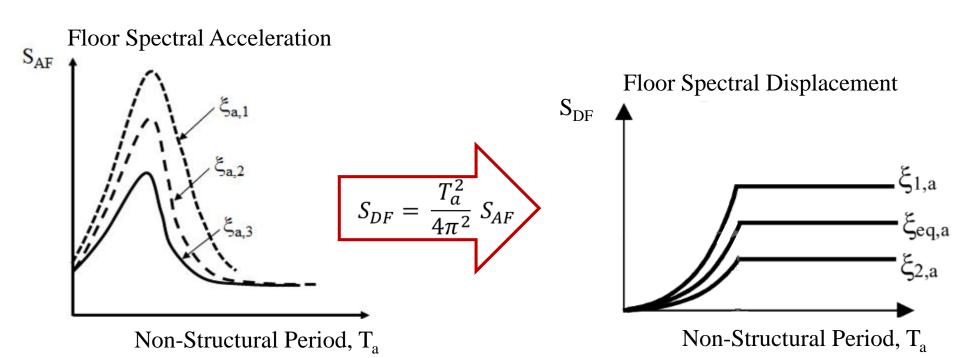

Storage Racks and Shelving



• Step 1: Definition of Target Non-Structural Displacement.

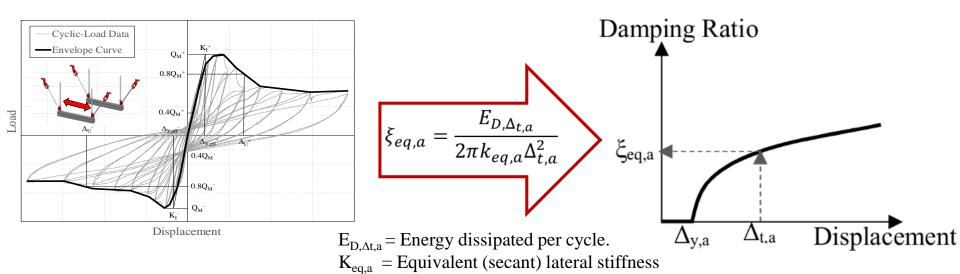
— Based on testing:

Frequent Earthquake: **Damage Prevention**

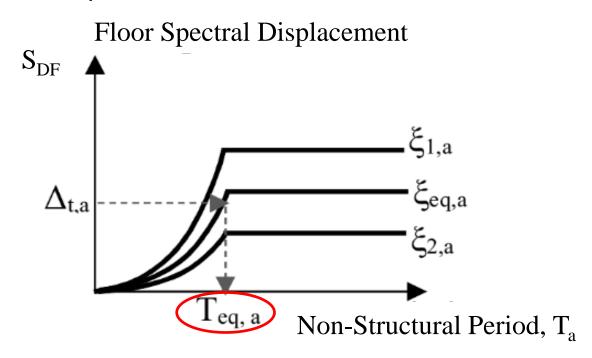


Displacement

- Step 1: Definition of Seismic Hazard.
 - Based on transformation of floor acceleration spectra into floor relative displacement spectra:



- Step 2: Determination of Equivalent Viscous Damping.
 - Based on testing and Jacobsen's damping model:



- Step 3: Determination of Equivalent Non-Structural Period.
 - Enter floor relative displacement spectra with target nonstructural Displacement :

- Step 4: Determination of Equivalent Non-Structural Lateral Stiffness.
 - Based on equivalent single degree-of-freedom system:

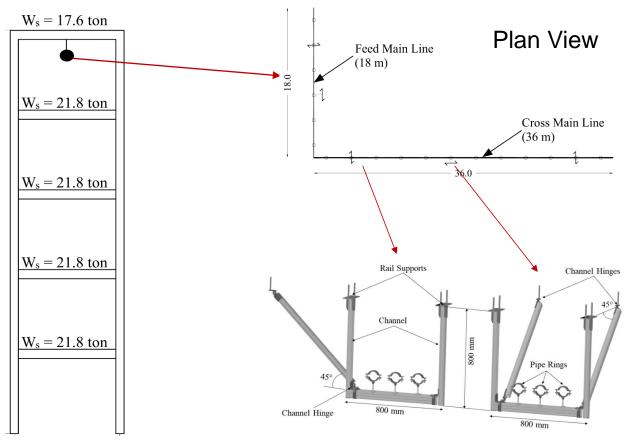
$$k_{eq,a} = \frac{4\pi^2 W_a}{gT_{eq,a}^2}$$

Step 5: Compute design seismic force.

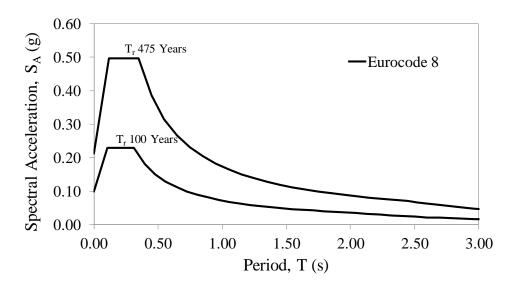
$$F_a = k_{eq,a} \Delta_{t,a}$$

- Major Advantages:
 - No estimation of the elastic period of the non-structural component and of the supporting structure is required.
 - 2. The highly empirical force reduction (behavior) factors do not enter in the design process.
 - 3. Displacements/deformations of the non-structural components relative to the supporting structure, known to cause damage to several non-structural typologies, drive the design process.
 - 4. Multiple performance objectives can be considered.

- Single Current Disadvantage:
 - Requires knowledge of the variation of the global equivalent non-structural viscous damping with non-structural displacement amplitude ($\xi_{\rm eq,a}$ $\Delta_{\rm t,a}$ relationship).
 - Knowledge of the cyclic behaviour of the multitude of non-structural typologies commonly used in buildings is not well established at this time.
 - Non-structural system level testing is required in parallel with the development of analytical/numerical models for various non-structural typologies.
 - These research activities, however, not different from those conducted over the last century for structural systems.

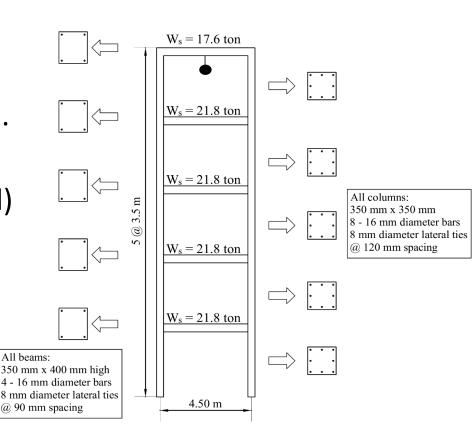


 Mechanical Piping System Suspended from the Top Floor of a Five-Storey Reinforced Concrete Frame.


Transverse and Longitudinal Sway Braced Trapezes

- Seismic Hazard
 - High seismicity site in Italy.
 - Design (475 years return period) peak ground acceleration of 0.21 g.
 - Serviceability (100 years return period) peak ground acceleration of 0.10 g.

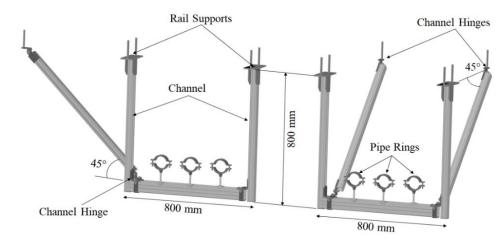
 Eurocode 8 Design Response Spectral Shapes.



IUSS Scuola Universitaria Superiore Pavia

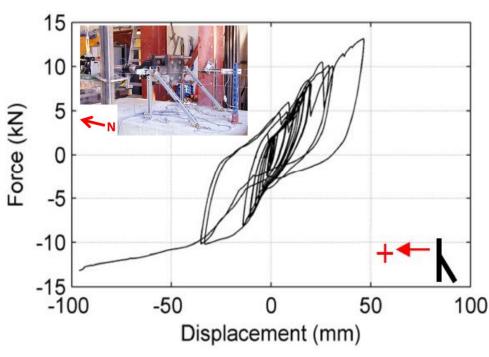
- Design of Supporting Frame:
 - Eurocode 8 Seismic Design
 Provisions.
 - Force reduction factor q = 3.75.
 - Ductility class B.
 - Design (475-year return period)
 peak ground acceleration of
 0.21 g.
 - Concrete strength = 30 MPa.
 - Yield strength of steelreinforcement = 450 MPa.

- Layout of Suspended Mechanical Piping System:
 - Feed main line (18 m long)
 perpendicular to a cross main line (36 m long).
 - Three separate pipes:
 - 1. Cold-water distribution line.
 - 2. Hot-water distribution line.
 - 3. Hot-water recirculation line.
 - Black standard steel pipes:
 - Diameter = 127 mm (5 inch).
 - Wall thickness = 6.5 mm.
 - $w_a = 0.31 \text{ kN/m}$ for each pipe.
 - All pipe elbows and longitudinal splices rigidly welded.



- Seismic Restraint Configurations and Properties:
 - Transverse and longitudinal sway braced trapezes.
 - All channels 41 mm deep.
 - 45° diagonal bracing channels.
 - Drop height = 800 mm.
 - Rail support connections to top floor slab.
 - Hinge connections between channels.
 - Pipe rings connected to horizontal channels vertical 12mm diameter threaded rod (50 mm long).

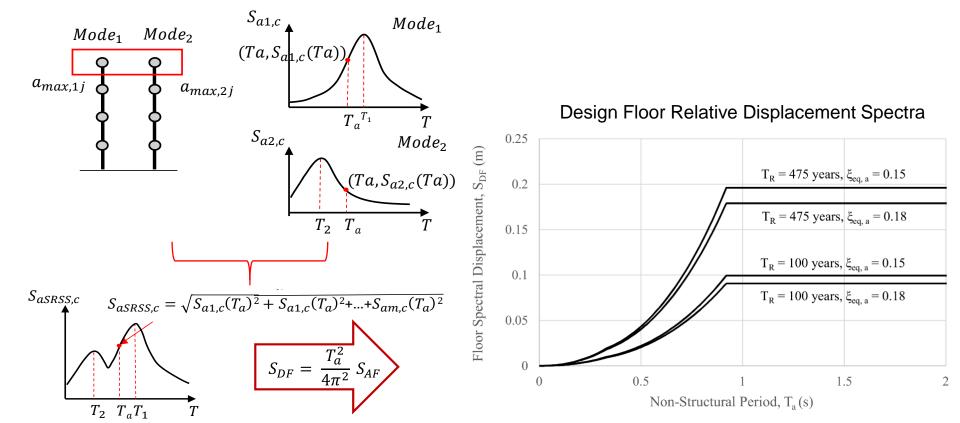
Transverse and Longitudinal Sway Braced Trapezes



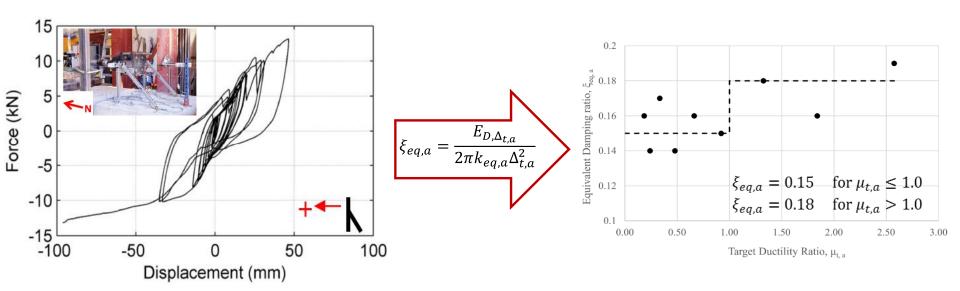
- Step 1: Definition of Target Non-Structural Displacements.
 - Based on testing by
 Wood et al. (2014).
 - Mean peak strengths and extracted.
 - Two performance objectives considered:

Performance	Ground	Sway Braced Trapeze Target		
Objective	Motions	Ductility Ratio, μ _{t.a}		
	Return Period,	Transverse	Longitudinal	
	T _r (year)	Direction	Direction	
Damage	100	1.0	1.0	
Prevention				
Life-Safety /	475	1.5	2.5	
Collapse				
Prevention				

Direction	Mean Properties				
	Peak Strength	Peak Strength Yield Displacement			
	$F_{max,a}$ (kN)	$\Delta_{\rm y,a}~({ m mm})$	μ_a		
Transverse	8.6	13.8	1.5		
Longitudinal	11.9	18.2	2.5		



- Step 1: Definition of Seismic Hazard.
 - Transformation of an existing floor acceleration spectra model (Sullivan et al. 2013; Calvi and Sullivan; 2014) into floor relative displacement spectra:



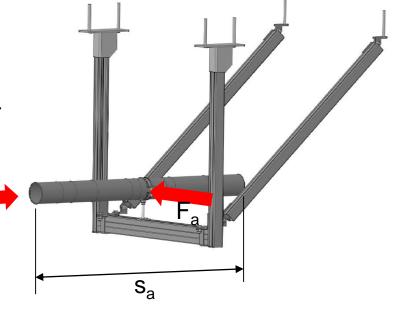
- Step 2: Determination of Equivalent Viscous Damping.
 - Based on testing by Wood et al. (2014) and Jacobsen's damping model:

- Steps 3 to 5 Determination of Design Forces.
 - Design equation for individual sway brace:

$$F_a \le \frac{F_{Rk}}{\gamma_m}$$

- F_{Rk} = Characteristic strength based on test results.
- γ_m = Resistance factor = 1.25 in this example.
- From DDBD Steps 4 and 5:

From DDBD Steps 4 and 5:


$$F_a = k_{eq,a} \Delta_{t,a} \quad k_{eq,a} = \frac{4\pi^2 W_a}{gT_{eq,a}^2}$$
Tributary seismic weight:

Tributary seismic weight:

$$W_a = 1.15N_p w_a s_a$$

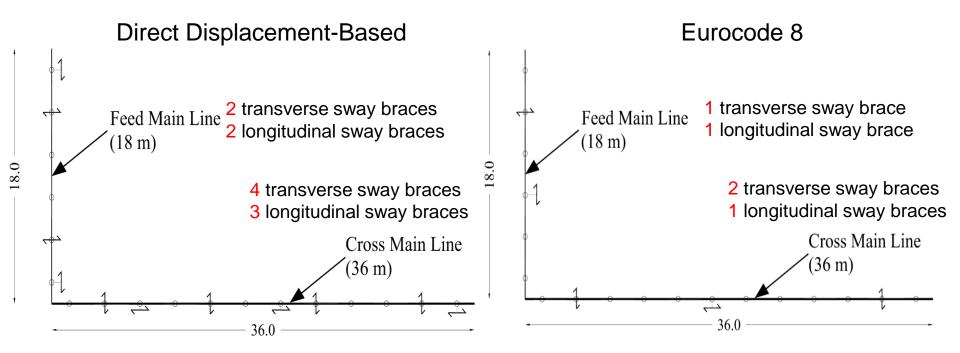
- N_p = Number of pipes = 3 in this example.
- 1.15 = Amplification factor to take into account weight of fittings and connections.
- Combining, obtain required spacing of sway braces:

$$s_a \le \frac{gT_{eq,a}^2}{4\pi^2 \Delta_{t,a}} \frac{F_{Rk}}{1.15 \gamma_m N_p w_a}$$

Final Decign Values

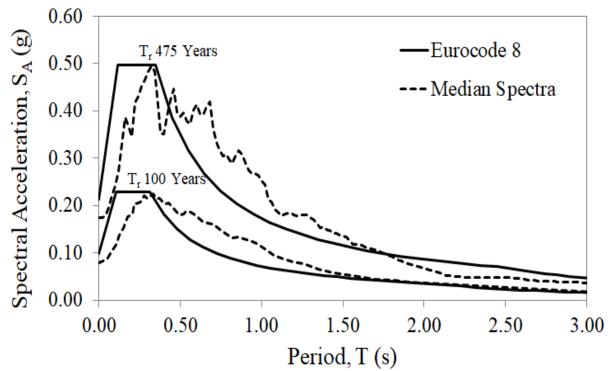
Design Example

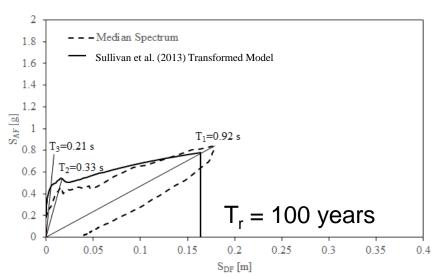
Final required spacing and number of sway braces:

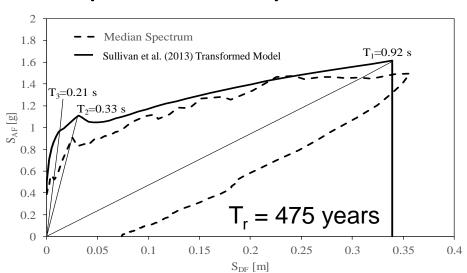

Decian Parameter

	Design Parameter	Final Design Values			
		Damage Prevention Hazard Level T _r = 100 years		Safety Prevention Hazard Level $T_r = 475$ years	
		Transverse	Longitudinal	Transverse	Longitudinal
Step 1 →	Sway Braced Trapeze Target Ductility Ratio, $\mu_{\text{t,a}}$	1.0	1.0	1.5	2.5
Step 2 →	Sway Braced Trapeze Equivalent Viscous Damping Ratio, $\xi_{\text{eq,a}}$	0.15		0.18	
Step 3 →	Sway Braced Trapeze Equivalent Period, T _{eg,a}	0.40 s	0.46 s	0.36 s	0.53 s
-	Number of Pipes, N _p	3			
	Unit Weight of One Water Filled Pipe, w _a	0.31 kN/m			
-	Resistance factor, γ_{m}	1.25			
Steps 4 & 5 → 	Characteristic Strength, F _{Rk}	8.6 kN	11.9 kN	8.6 kN	11.9 kN
	Required Spacing of Sway Braces, s _a	18.5 m	25.7 m	10.0 m	13.7 m
	Required Number of Sway Braced Trapezes in Feed Main Line (L = 18 m)	1	1	2*	2*
	Required Number of Sway Braced Trapezes in Cross Main Line (L = 36 m)	2	2	4*	3*

 Final Direct Displacement-Based Design and Comparison with Force-Based Eurocode 8 Design.

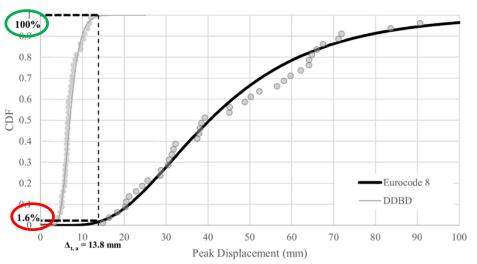

Note: Prescriptive spacing requirements not considered

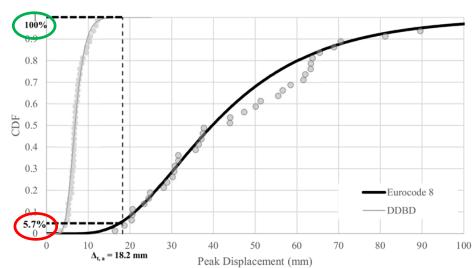

Ensemble of 20 three-dimensional ground motions generated for each of the two design return periods (T_r = 100 and 475 years) considered at the site of the supporting frame.



- Non-linear time-history dynamic analyses of the supporting frame under both horizontal components of 20 horizontal ground motions (40 records) generated for each of the return periods considered ($T_r = 100$ and 475 years).
- Generations of top floor horizontal acceleration timehistories and floor acceleration/displacement spectra.

- Non-linear time-history dynamic analyses of the suspended mechanical piping system retrained by the direct displacement-based and Eurocode designs under three-dimensional top floor accelerations time-histories.
 - Horizontal components generated from the analysis of the supporting frame.
 - Vertical ground accelerations.
 - Supporting frame assumed rigid.
- Computation of Cumulative probability Distribution Functions (CDFs) of maximum relative transverse and longitudinal displacements between the sway braced trapezes and the supporting structure.
- Percentiles of target displacements computed.

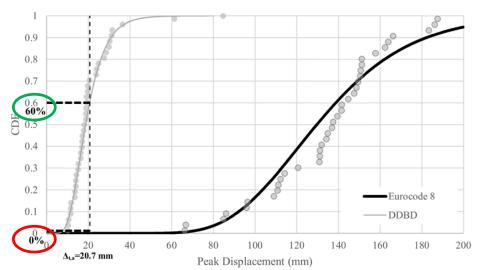


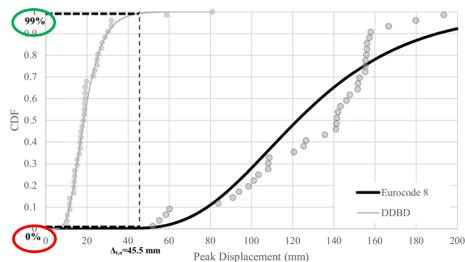


- Analysis Results.
 - 100 years return period:

Transverse Direction

Longitudinal Direction





- Analysis Results.
 - 475 years return period:

Longitudinal Direction

Conclusions

- Proposed direct displacement-based seismic design of nonstructural components is appropriate for accelerationsensitive non-structural components suspended or anchored at a single location (floor) in the supporting structure and for which damage is the result of excessive displacements.
- The new procedure requires, however, detailed information of the cyclic response of non-structural components that is not available for the multitude of non-structural typologies.
- Experimental work is needed to develop the information required for the wide scale applications of the direct displacement-based seismic design of non-structural components.

References

- Calvi, P.M., and Sullivan, T.J. 2014. "Estimating floor spectra in multiple degree of freedom systems," Earthquakes and Structures, An International Journal, Techno Press, 6(7), 17-38.
- Filiatrault, A., Perrone, D., Merino, R. and Calvi, G.M. 2018. "Performance-Based Seismic Design of Non-Structural Building Elements," Journal of Earthquake Engineering, DOI: 10.1080/13632469.2018.1512910.
- Miranda, E., and Taghavi, S. 2003. "Estimation of seismic demands on acceleration-sensitive non-structural components in critical Facilities," Proc. of the Seminar on Seismic Design, Performance, and Retrofit of Non-structural Components in Critical Facilities, ATC 29–2, Newport Beach, California, 347–360.
- Sullivan, T.J., Calvi, P.M., and Nascimbene, R. 2013. "Towards improved floor spectra estimates for seismic design," Earthquakes and Structures, An International Journal, Techno Press, 4(1), 109-132.
- Wood, R.L., Hutchinson, T.C., Hoehler, M.S., and Kreidl, B. 2014. "Experimental characterization of trapeze assemblies supporting suspended non-structural systems," Proc. of the Tenth U.S. National Conference on Earthquake Engineering, Paper No. 905, Anchorage, Alaska, 10 p.

Thank you!

What the client wanted.

The architect's solution.

solution.

The structural engineer's The non-structural engineer's Solution.