

HILTI HVZ **BONDED EXPANSION ANCHOR**

ETA-03/0032 (10.10.2024)

English 2-17

Deutsch 18-33

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-03/0032 of 10 October 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family

to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Hilti bonded anchor HVZ / HVZ R / HVZ HCR

Bonded fasteners and bonded expansion fasteners for use in concrete

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti Plants

16 pages including 3 annexes which form an integral part of this assessment

EAD 330499-02-0601, Edition 12/2023

ETA-03/0032 issued on 27 August 2015

European Technical Assessment ETA-03/0032

Page 2 of 16 | 10 October 2024

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z95693.23 8.06.01-223/23

European Technical Assessment ETA-03/0032

Page 3 of 16 | 10 October 2024

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Hilti adhesive anchor HVZ / HVZ R / HVZ HCR is a torque controlled bonded anchor consisting of a foil capsule with mortar Hilti HVU-TZ and an anchor rod (including nut and washer) in the sizes of M10/75, M12/95, M16/105, M16/125 and M20/170. The anchor rod (including nut and washer) is made of galvanized steel (HAS-TZ), stainless steel (HAS-RTZ) or high corrosion resistant steel (HAS-HCR-TZ).

The foil capsule is set into a drilled hole in the concrete. The special formed anchor rod is driven into the foil capsule by machine with simultaneous hammering and turning. The load transfer is realized by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European **Assessment Document**

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annexes C1 and B2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C2
Displacements under short-term and long-term loading	See Annex C3
Characteristic resistance and displacements for seismic performance categories C1 and C2	No Performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No Performance assessed

Z95693.23 8.06.01-223/23

European Technical Assessment ETA-03/0032

Page 4 of 16 | 10 October 2024

English translation prepared by DIBt

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance
Content, emission and/or release of dangerous substances	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD 330499-02-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

The following standards and documents are referred to in this European Technical Assessment:

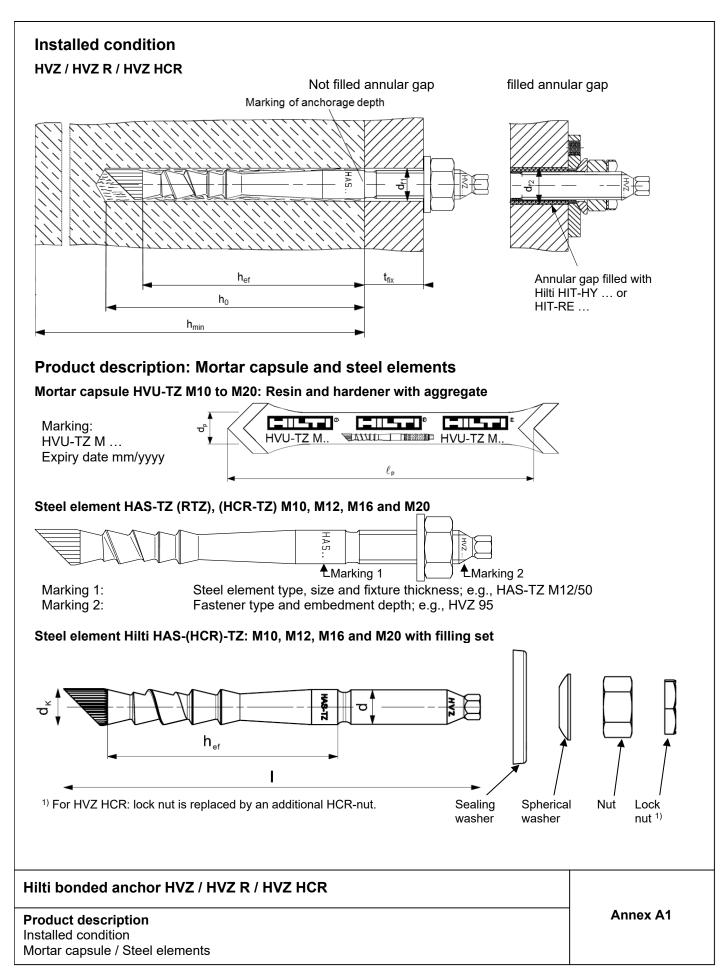
-	EN 1992-4:2018	Eurocode 2:	Design	of	concrete	structures -	Part 4:	Design	of
---	----------------	-------------	--------	----	----------	--------------	---------	--------	----

fastenings for use in concrete

- EN 1993-1-4:2006 + A1:2015 Eurocode 3: Design of steel structures - Part 1-4: General rules -

Supplementary rules for stainless steels

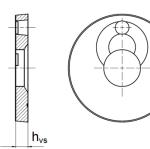
- EN 10088-1:2014 Stainless steels - Part 1: List of stainless steels

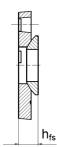

- EN 206:2013 + A1:2016 Concrete - Specification, performance, production and conformity

Issued in Berlin on 10 October 2024 by Deutsches Institut für Bautechnik

Beatrix Wittstock beglaubigt:
Head of Section Stiller

Z95693.23 8.06.01-223/23




Hilti Filling set to fill the annular gap between steel element and fixture

Sealing washer Spherical washer Filling set

Size		M10	M12	M16
Diameter of sealing washer	d _{vs} [mm]	42	44	52
Thickness of sealing washer	h _{vs} [mm]	Ę	6	
Thickness of Hilti Filling set	h _{fs} [mm]	9	10	11

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Product description Hilti Filling Set	Annex A2

Table A1: Materials

Designation	Material					
Steel elements made of zinc coated steel						
Anchor rod HAS-TZ	f_{uk} = 800 N/mm ² ; f_{yk} = 640 N/mm ² Coated, elongation at fracture (I_0 =5d) > 8% ductile					
Washer	Electroplated zinc coated ≥ 5 μm					
Nut	Electroplated zinc coated ≥ 5 μm					
Hilti Filling Set	Sealing washer: Electroplated zinc coated $\geq 5~\mu m$ Spherical washer: Electroplated zinc coated $\geq 5~\mu m$ Lock nut: Electroplated zinc coated $\geq 5~\mu m$					
	de of stainless steel e class III acc. to EN 1993-1-4					
Anchor rod HAS-RTZ	f_{uk} = 800 N/mm²; f_{yk} = 640 N/mm² Stainless steel 1.4401, 1.4404; elongation at fracture (I_0 =5d) > 8% ductile					
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1					
Nut	Strength class 70 or 80 Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1					
Hilti Filling Set	Sealing washer: Stainless steel according to EN 10088-1 Spherical washer: Stainless steel according to EN 10088-1 Lock nut: Stainless steel according to EN 10088-1					
Steel elements made of high corrosion resistant steel Corrosion resistance class V acc. to EN 1993-1-4						
Anchor rod HAS-HCR-TZ	f_{uk} = 800 N/mm ² ; f_{yk} = 640 N/mm ² High corrosion resistant steel 1.4529 EN 10088-1; elongation at fracture (I ₀ =5d) > 8% ductile					
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1					
Nut	Strength class 80 High corrosion resistant steel 1.4529, 1.4565 EN 10088-1					

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Product description Materials	Annex A3

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loading.

Base material:

- Reinforced or unreinforced normal weight concrete according to EN 206.
- Strength classes C20/25 to C50/60 according to EN 206.
- Cracked and non-cracked concrete.

Temperature in the base material:

· at installation

0 °C to +40 °C

• in-service

Temperature range: -40 °C to +80 °C

(max. long term temperature +50 °C and max. short term temperature +80 °C)

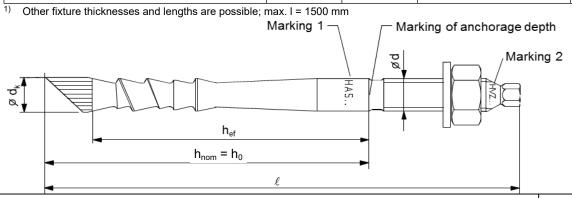
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according EN 1993-1-4 corresponding to corrosion resistance classes given in Table A1 (stainless steel or high corrosion resistant steel).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
 work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static loading are designed in accordance with: EN 1992-4.

Installation:


- Concrete condition I1: Installation in dry or wet (water saturated) concrete (not in flooded holes) and use in service in dry and wet concrete for all drilling techniques.
- · Drilling technique:
 - Hammer drilling,
 - Hammer drilling with hollow drill bit TE-CD, TE-YD.
- Installation direction D3: Downward, horizontal and upwards (e.g., overhead) installation.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended use Specifications	Annex B1

Table B1: Installation parameters

HAS-TZ / HA	AS-RTZ / HAS-H	CR-TZ		M10x75	M12x95	M16x105	M16x125	M20x170
Nominal dian	neter	d	[mm]	10	12	16		20
Nominal dian	neter of drill bit	d ₀	[mm]	12	14	1	8	25
Fixture thickr standard	ness 1)	t _{fix}	[mm]	15 / 30 50	25 / 40 50 / 100	30 / 60	0 / 100	40
Fixture thickness 1)	HVZ HVZ-RTZ	t_{fix}	[mm]	6 / 21 / 41	15 / 30 40 / 90	19 / 4	9 / 89	-
with filling set	HVZ-HCR-TZ	t _{fix}	[mm]	-	10 / 25 35 / 85	11 / 4	1 / 81	-
Total length of element 1)	of the steel	ł	[mm]	124 / 139 159	158 / 173 183 / 233	181 / 211 251	201 / 231 271	269
Diameter at t	the tip		[mm]	10,8	12,8	16	3,8	22,7
Nominal emb and drill hole	pedment depth depth	h _{nom} = h ₀	[mm]	90	110	125	145	195
Effective eml	bedment depth	h_{ef}	[mm]	75	95	105	125	170
Maximum dia clearance ho	ameter of le in the fixture	d _{f1}	[mm]	12	14	18	18	22
Maximum dia clearance ho	ameter of le in the fixture	d_{f2}	[mm]	14	16	2	0	-
Installation	HAS-TZ	T _{inst}	[Nm]	40	50	9	0	150
torque	HAS-RTZ HAS-HCR-TZ	T_{inst}	[Nm]	50	70	10	00	150
Minimum thickness of concrete member		h _{min}	[mm]	150	190	160	190	340
Cracked cor	ncrete							
Minimum spacing s _{min} [mm]		50	60	7	0	80		
$\label{eq:min_min} \mbox{Minimum edge distance} \qquad \mbox{c_{min}} \qquad \mbox{[mm]}$		50	60	7	0	80		
Uncracked o	concrete							
Minimum spa	acing	S _{min}	[mm]	50	60	7	0	80
Minimum edge distance c _{min} [C _{min}	[mm]	50	70	8	5	80

Hilti bonded anchor HVZ / HVZ R / HVZ HCR

Intended use Installation parameters Annex B2

Table B2: Curing time t_{cure}¹⁾

Temperature in the base material T	Curing time: full load t _{cure}
0 °C to 9 °C	1 hour
10 °C to 19 °C	30 min
20 °C to 40 °C	20 min

The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.

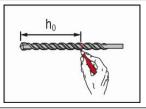
Table B3: Parameters of drilling and setting tool

Fastener	Drill		Setting tool
HAS-TZ	Hamme	r drilling	
HAS-RTZ HAS-HCR-TZ		Hollow drill bit TE-CD, TE-YD	
Size	d ₀ [mm]	d ₀ [mm]	
M10	12	-	TE-C HEX M10
M12	14	14	TE-C HEX M12
M16	18	18	TE-C HEX M16
M20	25	25	TE-C HEX M20

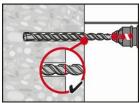
Table B4: Cleaning alternatives

Manual cleaning (MC):

Hilti hand pump for blowing out drill holes.

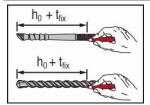

Automatic Cleaning (AC): Cleaning is performed during drilling with Hilti TE-CD and TE-YD drilling system including vacuum cleaner.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended use	Annex B3
Curing time	
Drilling, cleaning and setting tools	


Installation instruction

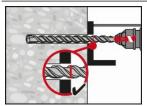
Hole drilling

Pre-setting:


Mark drill hole depth h₀ on drill bit TE-C, TE-Y, TE-CD or TE-YD or sett the depth gauge of the drilling machine to drill hole depth h₀.

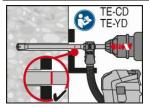
Pre-setting:

Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.


Do not drill deeper.

Through-setting:

Mark setting depth $h_0 + t_{fix}$ on element.

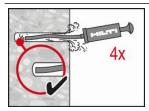

Mark drill hole depth h_0 + t_{fix} on drill bit TE-C, TE-Y, TE-CD or TE-YD or set the depth gauge of the drilling machine to drill hole depth h_0 + t_{fix} .

Through-setting:

Drill hole to the required drilling depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.

Do not drill deeper.

Pre- / Through-setting:


Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment.

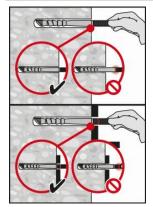
This drilling removes dust while drilling. After drilling is complete, proceed to the "check setting depth" step in the instructions for use.

Drill hole cleaning

<u>Pre- / Through-setting:</u> Just before setting the fastener, the drill hole must be free of dust and debris.

Inadequate hole cleaning = poor load values.

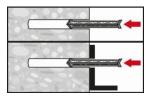
Pre- / Through-setting:


The Hilti hand pump may be used for blowing out drill holes.

Blow out at least 4 times from the back of the drill hole until return air stream is free of noticeable dust.

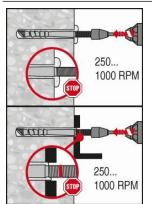
Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended use Installation instruction	Annex B4

Check setting depth


Pre- / Through-setting:

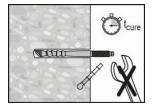
Check the setting depth with the marked element.

The element has to fit in the hole until the required embedment depth (pre-setting) or until the fixture surface (<u>Through-setting</u>).

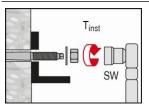

If it is not possible to insert the element to the required embedment depth, drill deeper.

Setting the element

Pre- / Through-setting:


Push the anchor foil capsule with the peak ahead to the back of the hole.

Pre- / Through-setting:


Drive the anchor rod with the setting tool (see Table B3) into the hole, applying moderate pressure and with the hammering action switched on (250 RPM to maximum 1000 RPM).

After reaching the embedment depth switch off setting machine.

Pre- / Through-setting:

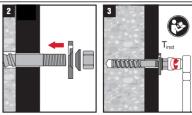
After required curing time t_{cure} (see Table B2) remove excess mortar.

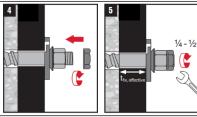
Pre-setting with clearance hole diameter ≤ d_{f1}:

Use of washer and nut with the anchor rod delivered.

Apply installation torque T_{inst} given in Table B1.

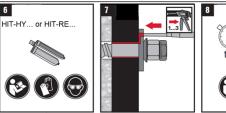
The anchor can be loaded.


Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Intended use Installation instruction	Annex B5


Installation with Hilti filling set (mandatory for clearance hole diameter > d_{f1} and $\leq d_{f2}$)

Use Hilti Filling Set with standard nut. Observe the correct orientation of filling washer and spherical washer.

Apply installation torque T_{inst} given in Table B1.



Pre-setting:

Optional: Installation of lock nut. Tighten with a $\frac{1}{4}$ to $\frac{1}{2}$ turn. Through-setting:

Apply the lock nut and tighten with a ¼ to ½ turn.

For HVZ HCR: Lock nut is replaced by an additional HCR-nut.

Fill the annular gap between steel element and fixture with 1-3 strokes of a Hilti injection mortar HIT-HY ... or HIT-RE Follow the installation instructions supplied with the respective Hilti injection mortar.

After the required curing time t_{cure} the fastening can be loaded.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR

Intended use Installation instruction

Annex B6

Table C1:	Essential	characteristics	for HVZ	(R) ((HCR)	under	tension	load
-----------	-----------	-----------------	---------	-------	-------	-------	---------	------

			. , .	-			
HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Installation factor	γinst	[-]	1,0				
Steel failure							
Characteristic resistance HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$N_{Rk,s}$	[kN]	35	51	9	0	182
Partial factor	γ _{Ms,N} 1)	[-]			1,5		
Pull-out failure							
Characteristic resistance in uncracked concrete C20/25	$N_{Rk,p,ucr}$	[kN]	_ 2)	40	_ 2)	_ 2)	_ 2)
Characteristic bond in cracked concrete C20/25	$N_{Rk,p,cr}$	[kN]	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
Factors for the influence of concrete		C30/37			1,22		
strength class	Ψc	C40/50	1,41				
$N_{Rk,p} = N_{Rk,p(C20/25)} \cdot \psi_c$	_	C50/60	1,58				
Concrete cone failure							
Effective embedment depth	h_{ef}	[mm]	75	95	105	125	170
Factor for uncracked concrete	$k_{\text{ucr},N}$	[-]			11,0		
Factor for cracked concrete	$k_{\text{cr},N}$	[-]			7,7		
Spacing	$s_{\text{cr},N}$	[mm]			$3{\cdot}h_{\text{ef}}$		
Edge distance	$c_{\text{cr,N}}$	[mm]			1,5·h _{ef}		
Splitting failure							
Spacing	S _{cr,sp}	[mm]			$2 \cdot c_{cr,sp}$		
For member thickness h ≥ 2 h _{ef}							
Edge distance	C _{cr,sp}	[mm]			1,5 h _{ef}		
Minimum member thickness 3)	h_{min}	[mm]	150	190	210	250	340
For member thickness h < 2 h _{ef}							
Edge distance	C _{cr,sp}	[mm]	_ 4)	_4)	2 h _{ef}	3 h _{ef}	_ 4)
Minimum member thickness 3)	h _{min}	[mm]	_ 4)	_4)	160	190	_4)
1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>	1			·

Annex C1

In absence of national regulations.
 N_{Rk,p} > N⁰_{Rk,c} according to EN 1992-4
 Minimum member thickness to be used for splitting failure.

⁴⁾ No performance assessed.

Table C2: Essential characteristics for HVZ (R) (HCR) under shear loads

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Steel failure without lever arm							
Characteristic resistance HAS-TZ	$V_{Rk,s}$	[kN]	18	27	5	51	88
Characteristic resistance HAS-RTZ / HAS-HCR-TZ	$V_{Rk,s}$	[kN]	20	30	5	66	98
Partial factor	γ _{Ms,V} 1)	[-]			1,25		
Ductility factor	k ₇	[-]			1,00		
Steel failure with lever arm							
Characteristic resistance HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$M_{Rk,s}$	[kN]	48	86	22	27	519
Partial factor	γ _{Ms,V} 1)	[-]			1,25		
Ductility factor	k ₇	[-]			1,00		
Concrete pry out failure							
Pry-out factor	k ₈	[-]	2,0				
Concrete edge failure							
Effective length of fastener in shear loading	I _f	[mm]	75	95	105	125	170
Outside diameter of fastener	d _{nom}	[mm]	10 12 16 20			20	
Partial factor	γ _{Mc} ¹⁾	[-]	1,5				

¹⁾ In absence of national regulations.

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Performance Essential characteristics under shear load in concrete	Annex C2

Table C3: Displacements under tension load for HVZ (R) (HCR)

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Displacement	δ_{N0} – factor	[mm/kN]	0,006	0,011	0,008	0,006	0,004
uncracked concrete	$\delta_{N^{\infty}}$ – factor	[mm/kN]	0,077	0,063	0,046	0,036	0,023
Displacement	δ_{N0} – factor	[mm/kN]	0,030	0,019	0,016	0,013	0,008
cracked concrete	 δ _{N∞} – factor	[mm/kN]	0,108	0,094	0,054	0,046	0,032

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \text{N}$

 $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \text{N} \qquad \qquad \text{(N: action tension load)}$

Table C4: Displacements under shear load for HVZ (R) (HCR)

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Disalessant	δ_{V0} – factor	[mm/kN]	0,132	0,146	0,09	94	0,063
Displacement	_{δν∞} – factor	[mm/kN]	0,202	0,222	0,14	41	0,089

1) Calculation of the displacement

 δ_{V0} = δ_{V0} – factor · V

 $\delta_{V\infty} = \delta_{V\infty} - factor \cdot V$ (V: action shear load)

Hilti bonded anchor HVZ / HVZ R / HVZ HCR	
Performance Displacements under tension and shear load in concrete	Annex C3

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-03/0032 vom 10. Oktober 2024

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Hilti Verbundanker HVZ / HVZ R / HVZ HCR

Verbunddübel und Verbundspreizdübel zur Verankerung im Beton

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

16 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330499-02-0601, Edition 12/2023

ETA-03/0032 vom 27. August 2015

Z95692.23

Europäische Technische Bewertung ETA-03/0032

Seite 2 von 16 | 10. Oktober 2024

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z95692.23 8.06.01-223/23

Europäische Technische Bewertung ETA-03/0032

Seite 3 von 16 | 10. Oktober 2024

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Hilti Verbundanker HVZ / HVZ R / HVZ HCR ist ein kraftkontrolliert spreizender Verbunddübel, der aus einer Mörtelschlauchpatrone mit Verbundmörtel Hilti HVU-TZ und einer Ankerstange (einschließlich Mutter und Unterlegscheibe) in den Größen M10/75, M12/95, M16/105, M16/125 und M20/170 besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl (HAS-TZ), nichtrostendem Stahl (HAS-RTZ) oder hochkorrosionsbeständigem Stahl (HAS-HCR-TZ).

Die Mörtelschlauchpatrone wird in ein zylindrisches Bohrloch gesteckt und die speziell geformte Ankerstange wird mittels Bohrmaschine mit eingeschaltetem Schlagwerk in die Mörtelschlauchpatrone getrieben. Die Kraftübertragung erfolgt über die mechanische Verzahnung einzelner Konen im Verbundmörtel und weiter über eine Kombination aus Halteund Reibungskräften im Verankerungsgrund (Beton).

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für Zugbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhänge C1 und B2
Charakteristischer Widerstand für Querbeanspruchung (statische und quasi-statische Einwirkungen)	Siehe Anhang C2
Verschiebungen für Kurzzeit- und Langzeiteinwirkungen	Siehe Anhang C3
Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorie C1 und C2	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Performance
Brandverhalten	Klasse A1
Feuerwiderstand	Leistung nicht bewertet

Z95692.23 8.06.01-223/23

Europäische Technische Bewertung ETA-03/0032

Seite 4 von 16 | 10. Oktober 2024

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

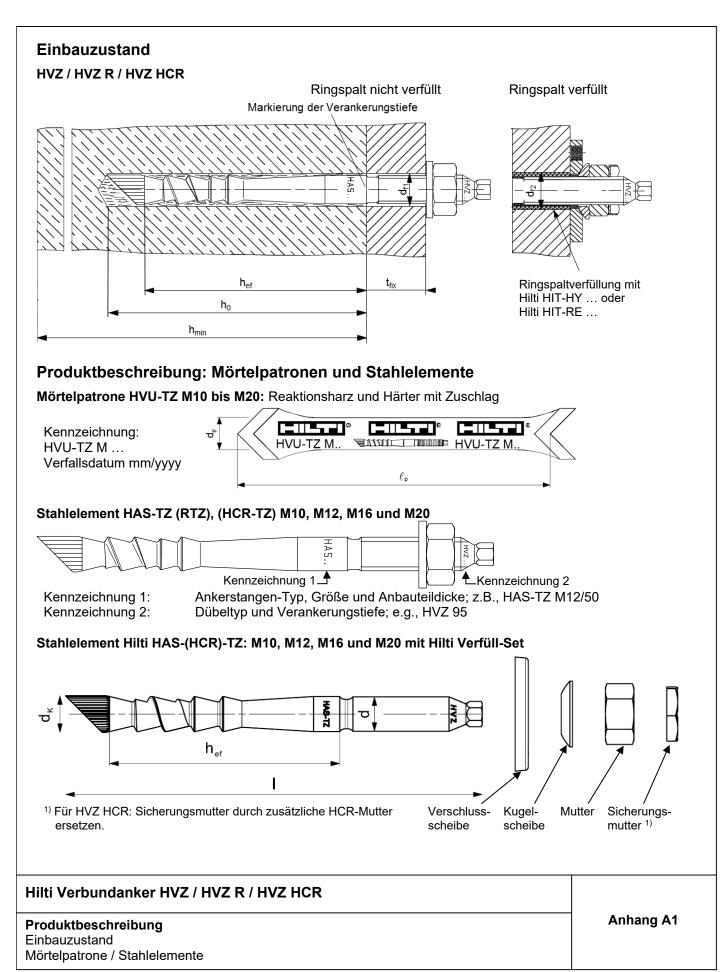
Gemäß EAD 330499-02-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

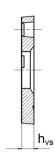
Folgende Normen und Dokumente werden in dieser Europäischen Technischen Bewertung in Bezug genommen:

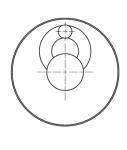

-	EN 1992-4:2018	Eurocode 2 - Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 4: Bemessung der Verankerung von Befestigungen in Beton
-	EN 1993-1-4:2006 + A1:2015	Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-4: Allgemeine Bemessungsregeln - Ergänzende Regeln zur Anwendung von nichtrostenden Stählen
-	EN 10088-1:2014	Nichtrostende Stähle - Teil 1: Verzeichnis der nichtrostenden Stähle
-	EN 206:2013 + A2:2021	Beton - Festlegung, Eigenschaften, Herstellung und Konformität

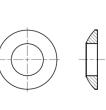
Ausgestellt in Berlin am 10. Oktober 2024 vom Deutschen Institut für Bautechnik

Beatrix Wittstock Beglaubigt Referatsleiterin Stiller

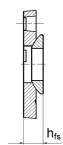
Z95692.23 8.06.01-223/23




Hilti Verfüll-Set zum Verfüllen des Ringspalts zwischen Stahlelement und Anbauteil


Verschlussscheibe

احیات


 $d_{vs} \\$

Kugelscheibe

Verfüll-Set

Größe			M10	M12	M16
Durchmesser der Verschlussscheibe	d _{vs}	[mm]	42	44	52
Höhe der Verschlussscheibe	h _{vs}	[mm]	Ę	5	6
Höhe des Verfüll-Sets	h _{fs}	[mm]	9	10	11

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Produktbeschreibung Hilti Verfüll-Set	Anhang A2

Tabelle A1: Werkstoffe

Bezeichnung	Material					
Stahlteile aus verzinktem Stahl						
Ankerstange HAS-TZ	f_{uk} = 800 N/mm²; f_{yk} = 640 N/mm² verzinkt und beschichtet, Bruchdehnung (I_0 =5d) > 8% duktil					
Scheibe	Galvanisch verzinkt ≥ 5 μm					
Mutter	Festigkeitsklasse 8; Galvanisch verzinkt ≥ 5 μm					
Hilti Verfüll-Set	$eq:Verschlussscheibe: Galvanisch verzinkt ≥ 5 μm \\ Kugelscheibe: Galvanisch verzinkt ≥ 5 μm \\ Sicherungsmutter: Galvanisch verzinkt ≥ 5 μm \\$					
	htrostendem Stahl ligkeitsklasse (CRC) III gemäß EN 1993-1-4					
Ankerstange HAS-RTZ	f_{uk} = 800 N/mm²; f_{yk} = 640 N/mm² Nichtrostender Stahl 1.4401, 1.4404 EN 10088-1; Bruchdehnung (I ₀ =5d) > 8% duktil;					
Scheibe	Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1					
Mutter	Festigkeitsklasse 70 oder 80 Nichtrostender Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1					
Hilti Verfüll-Set	Verschlussscheibe: Nichtrostender Stahl EN 10088-1 Kugelscheibe: Nichtrostender Stahl EN 10088-1 Sicherungsmutter: Nichtrostender Stahl EN 10088-1					
	chkorrosionsbeständigem Stahl ligkeitsklasse (CRC) V gemäß EN 1993-1-4					
Ankerstange HAS-HCR-TZ	f_{uk} = 800 N/mm²; f_{yk} = 640 N/mm² Hochkorrosionsbeständiger Stahl 1.4529 EN 10088-1; Bruchdehnung (I_0 =5d) > 8% duktil					
Scheibe	Werkstoff 1.4529, 1.4565 EN 10088-1					
Mutter	Festigkeitsklasse 80 Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 EN 10088-1					

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Produktbeschreibung Werkstoffe	Anhang A3

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

· Statische und quasi-statische Belastung.

Verankerungsgrund:

- Verdichteter bewehrter oder unbewehrter Normalbeton ohne Fasern nach EN 206.
- Festigkeitsklasse C20/25 bis C50/60 nach EN 206.
- Gerissener und ungerissener Beton.

Temperatur im Verankerungsgrund:

beim Einbau

0 °C bis +40 °C

· im Nutzungszustand

Temperaturbereich: -40 °C bis +80 °C

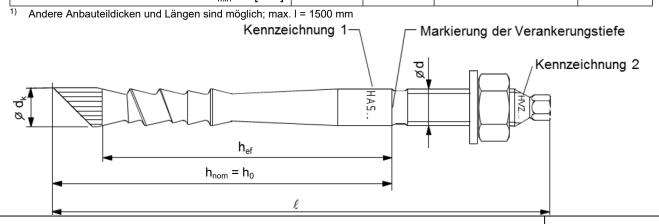
(max. Langzeit Temperatur +50 °C und max. Kurzzeit Temperatur +80 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (alle Stahlsorten).
- Für alle anderen Bedingungen entsprechend EN 1993-1-4: Korrosionsbeständigkeitsklasse nach Tabelle A1 (nichtrostende Stähle).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Befestigungselements (z. B. Lage des Befestigungselements zur Bewehrung oder zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: EN 1992-4


Einbau:

- Nutzungskategorie I1: Montage und Verwendung in trockenem oder feuchtem Beton (nicht in mit Wasser gefüllten Bohrlöchern) für alle Bohrverfahren.
- Bohrverfahren:
 - Hammerbohren,
 - Hammerbohren mit Hohlbohrer TE-CD, TE-YD.
- Montagerichtung D3: vertikal nach unten, horizontal und vertikal nach oben (z.B. Überkopf).
- Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Verwendungszweck Spezifizierung	Anhang B1

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170	
Nenndurchmesser		d	[mm]	10	12	16		20
Bohrernenndu	rchmesser	d_0	[mm]	12	14	1	18	
Anbauteildicke standard	, 1)	t_{fix}	[mm]	15 / 30 / 50	25 / 40 / 50 / 100	20 / 60 / 100		40
Anbauteil- dicke ¹⁾ mit	HVZ HVZ-RTZ	t _{fix}	[mm]	6 / 21 / 41	15 / 30 / 40 / 90	19 / 49 / 89		-
Verfüllset	HVZ-HCR-TZ	t _{fix}	[mm]	-	10 / 25 / 35 / 85	11 / 41 / 81		-
Gesamtlänge o Stahlelements		ℓ	[mm]	124 / 139 159	158 / 173 183 / 233	1		269
Durchmesser an der Spitze			[mm]	10,8	12,8	16,8		22,7
Nominelle Vera und Bohrlochti		h _{nom} = h ₀	[mm]	90	110	125 145		195
Effektive Verankerungstiefe		h _{ef}	[mm]	75	95	105	125	170
Maximaler Dur Durchgangsloo	chmesser des chs im Anbauteil	d _{f1}	[mm]	12	14	18 18		22
Maximaler Dur Durchgangsloo	chmesser des chs im Anbauteil	d _{f2}	[mm]	14	16	20		-
HAS-TZ		T _{inst}	[Nm]	40	50	9	0	150
Installations- drehmoment	HAS-RTZ HAS-HCR-TZ	T _{inst}	[Nm]	50	70	100		150
Minimale Baute	eildicke	h _{min}	[mm]	150	190	160	190	340
Gerissener Be	eton							
Minimaler Achsabstand s _m		S _{min}	[mm]	50	60	70		80
Minimaler Randabstand c _n		C _{min}	[mm]	50	60	7	0	80
Ungerissener	Beton		•					
Minimaler Achsabstand s _{min} [mm]		[mm]	50	60	7	0	80	
Minimaler Randabstand c		C _{min}	[mm]	50	70	8	5	80

Hilti Verbundanker HVZ / HVZ R / HVZ HCR

Verwendungszweck Montagekennwerte **Anhang B2**

Tabelle B2: Aushärtezeit t_{cure}1)

Temperatur im Verankerungsgrund T	Aushärtezeit: volle Last t _{cure}
0 °C bis 9 °C	1 h
10 °C bis 19 °C	30 min
20 °C bis 40 °C	20 min

Die Wartezeiten gelten für trockenen Verankerungsgrund.
Bei feuchtem Verankerungsrund sind die Zeiten zu verdoppeln.

Tabelle B3: Angaben zu Bohr- und Setzwerkzeugen

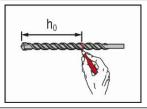
Ankerstange	Bol	nrer	Setzwerkzeug
HAS-TZ	Hamme	rbohren	
HAS-RTZ HAS-HCR-TZ		Hohlbohrer TE-CD, TE-YD	
Size	d ₀ [mm]	d ₀ [mm]	
M10	12	-	TE-C HEX M10
M12	14	14	TE-C HEX M12
M16	18	18	TE-C HEX M16
M20	25	25	TE-C HEX M20

Tabelle B4: Reinigungsalternativen

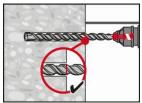
Handreinigung (MC):

Hilti-Handausblaspumpe zum Ausblasen von Bohrlöchern.

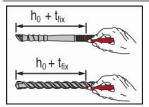
Automatische Reinigung (AC):


Die Reinigung wird während dem Bohren mit dem Hilti TE-CD and TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Verwendungszweck Aushärtezeit, Bohr-, Reinigungs- und Setzwerkzeuge,	Anhang B3

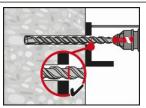

Montageanweisung

Bohrlocherstellung

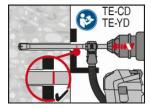

Vorsteckmontage:

Bohrtiefe h₀ auf Bohrer TE-C, TE-Y, TE-CD oder TE-YD oder Tiefenanschlag der Bohrmaschine auf Bohrtiefe h₀ einstellen.

Vorsteckmontage:


Bohrloch mit Bohrhammer drehschlagend unter Verwendung des passenden Bohrernenndurchmessers auf die richtige Bohrtiefe erstellen. Nicht tiefer bohren.

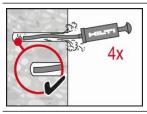
Durchsteckmontage:


Setztiefe h₀ + t_{fix} auf Ankerstange markieren.

Bohrtiefe h_0 + $t_{\rm fix}$ auf Bohrer TE-C, TE-Y, TE-CD oder TE-YD markieren oder Anschlag der Bohrmaschine auf Bohrtiefe h_0 + $t_{\rm fix}$ einstellen.

Durchsteckmontage:

Bohrloch mit Bohrhammer drehschlagend unter Verwendung des passenden Bohrernenndurchmessers auf die richtige Bohrtiefe erstellen. Nicht tiefer bohren.


Vorsteck- / Durchsteckmontage:

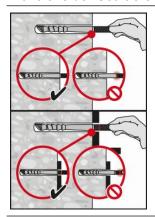
Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Hilti Bohrers TE-CD oder TE-YD mit Hilti Staubsaugeranschluss auf die richtige Bohrtiefe erstellen. Dieses Bohrsystem beseitigt das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs.

Nach Erstellen des Bohrlochs kann mit Arbeitsschritt "Kontrolle der Setztiefe" gemäß Montageanweisung fortgefahren werden.

Bohrlochreinigung

<u>Vorsteck- / Durchsteckmontage:</u> Unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein. Schlechte Bohrlochreinigung = geringe Traglasten.

Vorsteck- / Durchsteckmontage:

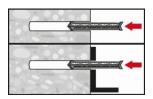

Die Hilti Handausblaspumpe kann verwendet werden.

Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Verwendungszweck Montageanweisung	Anhang B4

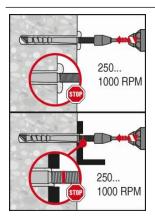
Kontrolle der Setztiefe

Vorsteck- / Durchsteckmontage:

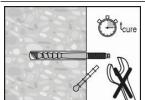

Setztiefe mit markierter Ankerstange kontrollieren.

Die Ankerstange muss bis zur Setztiefenmarkierung in das Bohrloch

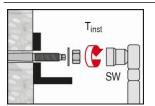
(Vorsteckmontage) oder bis zur Oberkante des Anbauteils (Durchsteckmontage) in das Bohrloch eingeführt werden.


Wenn es nicht möglich ist, die Ankerstange bis zur Setztiefenmarkierung in das Bohrloch einzuführen, entsprechend tiefer bohren.

Setzen des Befestigungselementes


Vorsteck- / Durchsteckmontage:

Die Mörtelpatrone mit der Spitze voran bis zum Bohrlochgrund einschieben.

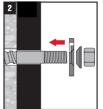

Vorsteck- / Durchsteckmontage:

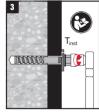
Die Ankerstange mittels Setzwerkzeug (siehe Tabelle B3) unter mäßigem Druck mit 250 bis maximal 1000 U/min und eingeschaltetem Schlagwerk eindrehen. Bei Erreichen der markierten Setztiefe, Bohrhammer abschalten.

Vorsteck- / Durchsteckmontage:

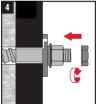
Nach Ablauf der erforderlichen Aushärtezeit t_{cure} (siehe Tabelle B2) kann der überstehende Mörtel entfernt werden.

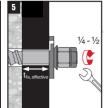
Vorsteckmontage mit Durchgangslochdurchmesser im Anbauteil \leq df₁: Unter Verwendung der mit der Ankerstange gelieferten Mutter und Scheibe. Aufbringen des erforderlichen Installationsdrehmoments T_{inst} (siehe Tabelle B1). Anschließend kann der Anker belastet werden.


Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Verwendungszweck Montageanweisung	Anhang B5

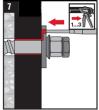


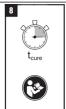
Installation mit Hilti Verfüll-Set (vorgeschrieben für Durchgangslochdurchmesser im Anbauteil > d_{f1} und $\leq d_{f2}$)




Verwendung des Hilti Verfüll-Sets mit Standardmutter. Korrekte Orientierung der Verschlussscheibe und der Kugelscheibe beachten.

Das aufzubringende Installationsdrehmoments ist in Tabelle B1 angegeben.




<u>Vorsteckmontage:</u> Optional: Sicherungsmutter von Hand aufdrehen und mit einer ¼ bis ½ Drehung anziehen.

<u>Durchsteckmontage:</u> Sicherungsmutter von Hand aufdrehen und mit einer ¼ bis ½ Drehung anziehen.

<u>Für HVZ HCR:</u> Die Sicherungsmutter ist durch eine zusätzliche HCR-Mutter zu ersetzen

Ringspalt zwischen Anbauteil und Ankerstange mit Hilti Injektionsmörtel HIT-HY ... oder HIT-RE ... mit ca. 1 bis 3 Hüben verfüllen. Dabei Mischerspitze senkrecht auf das Verfüllloch aufsetzen.

Befolgen Sie die Bedienungsanleitung, die dem Foliengebinde des entsprechenden Mörtels beigelegt ist.

Nach Ablauf der erforderlichen Aushärtezeit t_{cure} kann das Anbauteil belastet werden.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR

Verwendungszweck Montageanweisung **Anhang B6**

Tabelle C1: Wesentliche Merkmale für HVZ (R) (HCR) unter Zugbeanspruchung

				-	_	_	_
HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Montagebeiwert	γinst	[-]	1,0				
Stahlversagen							
Charakteristischer Widerstand HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$N_{Rk,s}$	[kN]	35	51	9	90	
Teilsicherheitsbeiwert	γ _{Ms,N} 1)	[-]		1,5			
Versagen durch Herausziehen							
Charakteristische Widerstand in ungerissenem Beton C20/25	$N_{Rk,p,ucr}$	[kN]	_ 2)	40,0	_ 2)	_ 2)	_ 2)
Charakteristische Widerstand in gerissenem Beton C20/25	$N_{Rk,p,cr}$	[kN]	_ 2)	_ 2)	_ 2)	_ 2)	_ 2)
Faktor für den Einfluss der		C30/37	1,22				
Betonfestigkeitsklasse:	Ψc	C40/50	1,41				
$N_{Rk,p} = N_{Rk,p(C20/25)} \cdot \psi_c$	_	C50/60	1,58				
Versagen durch Betonausbruch							
Wirksame Verankerungstiefe	h _{ef}	[mm]	75	95	105	125	170
Faktor für ungerissenen Beton	k _{ucr}	[-]			11,0		
Faktor für gerissenen Beton	k _{cr}	[-]			7,7		
Achsabstand	$s_{\text{cr},N}$	[mm]			$3 \cdot h_{\text{ef}}$		
Randabstand	C _{cr,N}	[mm]			1,5·h _{ef}		
Versagen durch Spalten							
Achsabstand	$S_{cr,sp}$	[mm]			$2 \!\cdot\! c_{\text{cr,sp}}$		
Für Bauteildicke h ≥ 2 h _{ef}							
Randabstand	$\mathbf{c}_{cr,sp}$	[mm]	1,5 h _{ef}				
Minimale Bauteildicke 3)	h _{min}	[mm]	150	190	210	250	340
Für Bauteildicke h < 2 h _{ef}							
Randabstand	C _{cr,sp}	[mm]	_ 4)	_ 4)	2 h _{ef}	3 h _{ef}	_ 4)
Minimale Bauteildicke 3)	h _{min}	[mm]	_ 4)	_ 4)	160	190	_ 4)
1) 0 (1	I .			l

Sofern nationale Regelungen fehlen.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Leistung Wesentliche Merkmale unter Zugbeanspruchung in Beton	Anhang C1

²⁾ $N_{Rk,p} > N_{Rk,c}^0$ nach EN 1992-4

³⁾ Minimale Bauteildicke bei Versagen durch Spalten verwenden.

⁴⁾ Leistung nicht bewertet.

Tabelle C2: Wesentliche Merkmale für HVZ (R) (HCR) unter Querbeanspruchung

HAS-TZ / HAS-RTZ / HAS-HCR-TZ			M10x75	M12x95	M16x105	M16x125	M20x170
Stahlversagen ohne Hebelarm							
Charakteristischer Widerstand HAS-TZ	$V_{Rk,s}$	[kN]	18	18 27 51			
Charakteristischer Widerstand HAS-RTZ / HAS-HCR-TZ	$V_{Rk,s}$	[kN]	20	30	56		98
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,25				
Duktilitätsfaktor	k ₇	[-]			1,00		
Stahlversagen mit Hebelarm							
Charakteristischer Widerstand HAS-TZ / HAS-RTZ / HAS-HCR-TZ	$M_{Rk,s}$	[kN]	48 86 227		519		
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,25				
Duktilitätsfaktor	k ₇	[-]	1,00				
Betonausbruch auf der lastabgewand	dten Seite	Э					
Faktor	k ₈	[-]			2,0		
Betonkantenbruch							
Wirksame Länge des Befestigungselements	l _f	[mm]	75	95	105	125	170
Außendurchmesser des Befestigungselements	d _{nom}	[mm]	10 12 16 2			20	
Teilsicherheitsbeiwert	γ _{Mc} ¹⁾	[-]	1,5				

¹⁾ Sofern nationale Regelungen fehlen.

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Leistung Wesentliche Merkmale unter Querbeanspruchung in Beton	Anhang C2

Tabelle C3: Verschiebungen unter Zugbeanspruchung für HVZ (R) (HCR)

HAS-TZ / HAS-RTZ / HAS-HCR-TZ		M10x75	M12x95	M16x105	M16x125	M20x170	
Verschiebung ungerissener Beton	δ_{N0} – Faktor	[mm/kN]	0,006	0,011	0,008	0,006	0,004
	$\delta_{N\infty}$ – Faktor	[mm/kN]	0,077	0,063	0,046	0,036	0,023
Verschiebung gerissener Beton	δ_{N0} – Faktor	[mm/kN]	0,030	0,019	0,016	0,013	0,008
	_{N∞} – Faktor	[mm/kN]	0,108	0,094	0,054	0,046	0,032

¹⁾ Berechnung der Verschiebung

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{Faktor} \cdot \text{N}$

 $\delta_{N^{\infty}} = \delta_{N^{\infty}} - Faktor \cdot N \hspace{1cm} \text{(N: einwirkende Zugkraft)}$

Tabelle C4: Verschiebungen unter Querbeanspruchung für HVZ (R) (HCR)

HAS-TZ / HAS-RTZ / HAS-HCR-TZ		M10x75	M12x95	M16x105	M16x125	M20x170	
Vorashishung	δ_{V0} – Faktor	[mm/kN]	0,132	0,146	0,09	94	0,063
Verschiebung	δ _{V∞} – Faktor	[mm/kN]	0,202	0,222	0,14	41	0,089

1) Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0} - Faktor \cdot V$

 $\delta_{N\infty} = \delta_{N\infty} - \text{Faktor} \cdot \text{V}$ (V: einwirkende Querkraft)

Hilti Verbundanker HVZ / HVZ R / HVZ HCR	
Leistung Verschiebungen unter Zug- und Querbeanspruchung in Beton	Anhang C3